• Title/Summary/Keyword: Seidel aberration

Search Result 16, Processing Time 0.021 seconds

Lens Design of Camera through Optimization of the Third Order Seidel Aberration and Statistical Tolerance Analysis

  • Lee, Kyutae;Kim, Young-Joo;Kim, Youngwoon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.413-426
    • /
    • 2016
  • There has been much advancement in the field of aerial cameras for geographical features with the help of drones, image processing power and computer aided optical programs. In this study, we propose a new optical lens design technique which minimizes the amount of ‘the third order Seidel aberration’ for enhancing MTF. In addition, we suggest a new optical lens design which stabilizes the mass-production yield through R.S.M and has robustness secure through the Taguchi method. Eventually, the image processing algorithm of stereo matching is implemented in order to evaluate whether the proposed lens design result meets adequate specifications for the use of dual aerial photographs or not. This paper provides good guidance for the optical design by development of experiments.

Design and Aberration Analysis of Four-Spherical Mirror System Corrected for 4 Aberrations (4개의 수차가 보정된 유한 물체점을 갖는 4-구면 반사경계의 설계 및 수차해석)

  • 김종태;공홍진;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.127-132
    • /
    • 1991
  • We have obtained the analytic solutions of the four spherical mirror system free from the Seidel third order aberratios which are spherical aberration, coma, astigmatism, and distortion, Vignetting. Petzval field curvature, and optical properties according to the design parameters are numerically investigated and optimized. The numerical aperture of this system is 0.2 and the half field angle is $1.5^{\circ}$.

  • PDF

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.

Comparison of the Optical properties of Schematic Eyes by using the Seidel aberrations (자이델 수차를 이용한 모형안의 광학적 성능 비교)

  • Kim, Bong-Hwan;Lim, Hyeon-Seon;Ji, Taek-Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.269-280
    • /
    • 2004
  • For the studying of the optical property of the human eye by using the Seidel aberrations with schematic eyes, we have used the several paraxial and fine schematic eyes. In another world, after fixing the iris ot aperture pinhole on the anterior of lens, we investigated how the surface contributions and the surface asphericity affected the optical properties of schematic eyes by using the Seidel aberration coefficients variation. Also, by analysis of dividing both a relaxed state and the accommodation state of the eye, we investigated the change of the optical properties during the change of accommodation.

  • PDF

Strehl ratio and marechal criterion for gaussian pupil imaging system (가우스 동 결상계에 대한 Strehl Ratio와 Marechal 한계)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.227-230
    • /
    • 1998
  • The Strehl ratio(SR) expressions are derived from the diffration intensity distribution in a Gaussian pupil imaging system, and Marechal criterion is applied for the case of astigmatism aberration first and then to all the rest of the Seidel 1st order aberrations. The aberration criteria obtained are tabulated. In the case of Rayleigh's pupil, the same criteria are always smaller than Gaussian pupil, thus the latter is superior to the former.

  • PDF

Gaussian Bracket Expressions of Aplanatic and Achromatic Conditions for Telephoto Type Telescope Objective Derived from the Numerical Solution (Aplanat조건과 Achromatwhrjs의 Gauss괄호 표현과 Telephoto형 망언경 대물렌즈의 설계)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 1993
  • We have derived Gaussian bracket expressions of aplanatic and achromatic conditions and obtained the numerical solutions for each of two modules of the telephoto type telescope objective free from the Seidel first order spherical aberration, coma, and longitudinal chromatic aberration. The system which is for use in sighting a target is optimized within the resolution of eyes. The objective lens satisfying the aplanatic and achromatic condition has f/8.5 with the half field angle 0.$3^{\circ}$, and the telephoto ratio is 0.839 with the focal length of 30 cm.

  • PDF

Parameterized Modeling of Spatially Varying PSF for Lens Aberration and Defocus

  • Wang, Chao;Chen, Juan;Jia, Hongguang;Shi, Baosong;Zhu, Ruifei;Wei, Qun;Yu, Linyao;Ge, Mingda
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.136-143
    • /
    • 2015
  • Image deblurring by a deconvolution method requires accurate knowledge of the blur kernel. Existing point spread function (PSF) models in the literature corresponding to lens aberrations and defocus are either parameterized and spatially invariant or spatially varying but discretely defined. In this paper, a parameterized model is developed and presented for a PSF which is spatially varying due to lens aberrations and defocus in an imaging system. The model is established from the Seidel third-order aberration coefficient and the Hu moment. A skew normal Gauss model is selected for parameterized PSF geometry structure. The accuracy of the model is demonstrated with simulations and measurements for a defocused infrared camera and a single spherical lens digital camera. Compared with optical software Code V, the visual results of two optical systems validate our analysis and proposed method in size, shape and direction. Quantitative evaluation results reveal the excellent accuracy of the blur kernel model.

Optical Design of a Zoom Eyepiece (Zoom접안경에 대한 광설계)

  • 임천석;이상수;박충선;김재순
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.356-363
    • /
    • 1994
  • By Gaussian optics, a zoom eyepiece is analyzed, which has the diameter of exit pupil 0.5 em, eyerelief 1 em, and angular magnification $M_a=7~15$. The initial design is based on this analysis. Telescope objective which was previously designed has focal length($(f_u')$ 21.0 em, and its clear aperture is 6.2 em. Zoom telescope has half field angle $\beta=1.5^{\circ}$ at the entrance pupil and at exit pupil it is $\beta'=1.5^{\circ}\times(7~15)=10.5^{\circ}~22.5^{\circ}$. Zoom eyepiece consists of three groups, of which each one satisfies the Seidel 3,d order aplanatization. Final design is obtained by optimization for the finite ray aberration, and the zoom eyepiece is assessed on the basis of the resolution of eyes.f eyes.

  • PDF

Optical system design for compact digital still camera using diffractive optical elements (회절광학소자를 이용한 컴팩트 디지털 스틸 카메라용 광학계 설계)

  • 박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • In this paper, the fundamental properties of diffractive optical element were investigated. Also, this work deals with theoretical approaches for achromatization in DOE's optical system based on thin lens theory. It is found that achromatization could be satisfied by one hybrid lens only, which is composed of a diffractive and a refractive element. In order to have compact optical system, we used the tele-photo type lens composed of a positive and a negative power elements instead of retro-focus lens. From the Gaussian brackets and Seidel aberration theory, the initial design was numerically obtained. The aberration properties of an initial design was aplanat and flat field. In order to correct the chromatic aberrations, refractive and diffractive elements were used on front element. This hybrid lens is also useful for correction of higher order aberrations. Compared to conventional design composed of refractive lenses only, this approach dramatically improved the compactness of the optical system. Finally, residual aberration balancing results in a lens with focal length of 3.89 mm and overall length of 5.19 mm, which has enough performance over an f-number of 4.0. Also, it is expected to fulfill all the requirements of a digital still camera lens. This optical system is superior to the current refractive lens system in the number of elements, weight, and aberration properties. rties.

  • PDF

Curvature Linear Equation of a Coma Corrected Two-Mirror System with Finite Object Distance (유한 물체거리를 갖는 코마수차가 보정된 2 반사경계의 곡률선형방정식)

  • Hwang, Seok-Ju;Rim, Cheon-Seog;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2007
  • We derived analytically the generalized curvature linear equation useful in the initial optical design of a two-mirror system with finite object distance, including an infinite object distance from paraxial ray tracing and Seidel third order aberration theory for coma coefficient. These aberration coefficients for finite object distance were described by the curvature, the inter-mirror distance, and the effective focal length. The analytical equations were solved by using a computer with a numerical analysis method. Two useful linear relationships, determined by the generalized curvature linear equations relating the curvatures of the two mirrors, for the cancellation of each aberration were shown in the numerical solutions satisfying the nearly zero condition ($<10^{-10}$) for each aberration coefficient. These equations can be utilized easily and efficiently at the step of initial optical design of a two-mirror system with finite object distance.