• Title/Summary/Keyword: Sediment Volume

Search Result 149, Processing Time 0.024 seconds

Effects of Control of Dam Sedimentation by a Hydraulic Structure in a Reservoir (저수지내 수리구조물에 의한 퇴사량 제어 효과)

  • Cho, Hong Je;Kang, Ho Seon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1157-1167
    • /
    • 2013
  • Sayeon dam is the one that is structured in 1965 and supplying residential water in Ulsan. The hill located within the reservoir near the entrance of the dam spillway plays a role as a natural Dike. According to the recent surveys on change of sediment and effective volume of water kept in store, the latter that decreased 2.92% from twenty million tons and the former increased just 1.65 m. In this survey we examined the application of SED-2D model using measured data of Sayeon dam sediment. In addition we surveyed the inflow control and the water depth to be kept when installing small hydraulic structure similar to Dike around the dam reservoir entrance. To do this, we simulated the hydraulic effects and sediment on the conditions eliminating the hill or installing the structure higher than it. The controlling effects of present hill or adding small hydraulic structure on it was found, though the changes of the measure was not large.

The Effective Wind Velocity and the Patterns of Morphological Change in the Coastal Dune Area (해안사구에서의 유효풍속과 지형변화)

  • Sea, Jong-Cheol
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.3
    • /
    • pp.667-681
    • /
    • 2004
  • This research is aimed to investigate the relationship of the effective wind velocity and the morphological change in coastal dune at Sindu-ri in Korea. Sediment flux was estimated by the measurement of elevation change along eight transects deployed in the study area from July 1999 to July 2000. The results of this study indicated that. first. based on the occurrence of morphological change and winds effective for sand movement. two distinct seasons were identified: a season of deposition and that of erosion. During the depositional season, spanning from November to April, effective winds were dominant and sand accumulation occurred mainly in foredunes and sequentially in dune plains. During the erosional season, from May through October, volume change was small and erosion or sand loss occurred mostly at the dunefoot of foredunes. Secondly, the research revealed that the sediment budget of Sindu coastal dune turned out to be surplus on the whole, but there are some regional differences. Deficit budgets were observed partly in secondary dunes. The utmost northern part of Sindu coastal dune was provided with abundant sand, whereas the central and northern parts were poorly supplied.

  • PDF

The Variation of Density and Settlement for Contaminated Sediments During Electrokinetic Sedimentation and Remediation Processes (오염퇴적토에 대한 동전기적 침전 및 정화 공정에서의 시료 밀도 및 침하 변화 특성)

  • Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.5-14
    • /
    • 2006
  • Generally, the sediments contain significant water, clay, colloidal fraction and contaminants, and can result in soft strata with high initial void, and its potential hazards in subsurface environments exist. Electrokinetic technique has been used in sedimentation for volume reduction of slurry tailing wastes and in remediation for extraction of contaminants from contaminated soils. In this research, the coupled effects of sedimentation and remediation of contaminated sediments are focused using electrokinetic sedimentation and remediation techniques from experimental aspects. A series of laboratory experiments including variable conditions such as initial solid content of the specimen, concentration level of the contaminant, and magnitude of applied voltage are performed with the contaminated sediment specimens mixed with ethylene glycol. Commercially available high specification Kaolin was used to simulate slurried sediment. From the test results, the settlement of specimen increases with increasing of applied voltage and decreasing of solid content and contamination level. The density of specimen increases due to settlement of specimen in the process of electrokinetic sedimentation and decreases due to extraction of organic contaminant in the process of electrokinetic remediation.

A Study on the Sediment Volume Change and Two-dimensional Deposited Characteristics of Pumping-dredged Soil (준설토의 체적변화 및 2차원 퇴적특성에 관한 연구)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.155-165
    • /
    • 2003
  • A series of one-dimensional cylinder sedimentation test, seepage consolidation test and two-dimensional deposition model test were conducted to examine the characteristics of deposition and volume change of dredged soils containing the high water content, and these experimental results were compared with the sedimentary conditions of actual dredged-reclaimed fields to obtain the relations of a volume change by settling what is required for design. In addition, the change of water content and the distribution of fine grained soils after sedimentation were investigated. Thus, it was concluded that deposition height increased lineary as substantial soil volume increased, and also the elevation of interface increasea proportionately at both the starting time and the finishing time of virtual self-weight consolidation in one-dimensional sedimentation. Furthermore, the two-dimensional model test results were shown to describe the plain distribution of water content and fine grained silt where dredged soil was deposited by two dimensional flowing, and the water content was distributed to wide range from the minimum water content 30% to maximum 180% according to the passed amount of №200 sieve percentage.

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

Use of Cs-137 Redistribution in Estimating Deposition at The Sansu Reservoir (Cs-137 분포를 이용한 저수지의 퇴적 양상 추정)

  • Kim, Kye-Hoon
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.157-162
    • /
    • 1995
  • A reservoir located at Chollanam-do province was selected to estimate annual deposition rate, volume of annually deposited material, and annual soil loss from the watershed using Cs-137 redistribution. Sediment profiles of the reservoir indicated an average annual deposition rate of 1.56 cm $yr^{-1}$ and the total deposited volume of $166530\;m^3$ since 1963/64. Annual soil loss from the watershed was 25 ton $ha^{-1}$. Particle size analysis showed that most of the particles were silt-sized ones.

  • PDF

A Study on Changes in Pore Water Quality of Polluted Sediment due to Mixing Ratio of Granulated Coal Ash (석탄회 조립물 혼합비율에 따른 오염 퇴적물의 간극수 수질 변화에 관한 연구)

  • Lee, In-Cheol;Woo, Hee-Eun;Kim, Kyeongmin;Lee, Jun-Ho;Kim, Kyunghoi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.5
    • /
    • pp.201-206
    • /
    • 2018
  • This study investigated the changes in pore water quality of polluted sediment by mixing ratio of granulated coal ash. The mesocosm experiments were carried out with 0%, 10%, 30% and 50%, respectively, of the material mixture ratio relative to the sediments. According to the results of the experiments, pH increased depending on the mixing ratio. Phosphate and ammonia concentrations were significantly decreased in the mixing ratio of 30% and 50% compared to the control (p < 0.05). The concentration of hydrogen sulfide was reduced by 72% at the mixing ratio of 10%, and it was not detected at the mixing ratio of 30% and 50%. This study was confirmed that granulated coal ash can change the pore water quality of polluted sediments in proportion to the amount of material. However, the effect of the mixing ratio between 30% and 50% was not significantly different, thus it is concluded that mixing of 30% of the volume of the sediment is economically feasible.

Sediments and Design Considerations in the Forebay of Stormwater Wetland (강우유출수 처리목적 인공습지 침강지의 퇴적물 특성 및 설계 적정성에 관한연구)

  • Park, Kisoo;Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.223-235
    • /
    • 2012
  • In this paper, field study results about accumulation of sediments and its property in the forebay of wetland aiming at stormwater from rural area wherein intensive cow feeding lots are operated are provided. In addition, some design aspects are discussed. Amount of sediment generation in the longitudinal direction of forebay was found to be affected by hydrological factors such as rainfall depth and intensity. Nutrient contents in the sediments of this wetland were 10 times higher than those in stormwater wetland in rural area without animal-feeding lot. Total-Pb and As contents show similar level to values from the soils of surrounding watershed, but Total-Cu content was higher due to the animal feeding lots. Yearly amount of sediment generation, its depth and volume were estimated to 13tons, 23cm, and $65m^3$. Based on these results and recommended guideline by Korean Ministry of Environment, dredging frequency was found to be about 2.7years. The shape of forebay has to be carefully designed to deal with a great change in flow rate. According to the results of sediment depth analysis, instead of the present rectangular, wedge-shape forebay is more desirable in handling scouring caused by high flows.