DOI QR코드

DOI QR Code

A Study on Changes in Pore Water Quality of Polluted Sediment due to Mixing Ratio of Granulated Coal Ash

석탄회 조립물 혼합비율에 따른 오염 퇴적물의 간극수 수질 변화에 관한 연구

  • Received : 2018.07.10
  • Accepted : 2018.09.06
  • Published : 2018.10.31

Abstract

This study investigated the changes in pore water quality of polluted sediment by mixing ratio of granulated coal ash. The mesocosm experiments were carried out with 0%, 10%, 30% and 50%, respectively, of the material mixture ratio relative to the sediments. According to the results of the experiments, pH increased depending on the mixing ratio. Phosphate and ammonia concentrations were significantly decreased in the mixing ratio of 30% and 50% compared to the control (p < 0.05). The concentration of hydrogen sulfide was reduced by 72% at the mixing ratio of 10%, and it was not detected at the mixing ratio of 30% and 50%. This study was confirmed that granulated coal ash can change the pore water quality of polluted sediments in proportion to the amount of material. However, the effect of the mixing ratio between 30% and 50% was not significantly different, thus it is concluded that mixing of 30% of the volume of the sediment is economically feasible.

본 연구에서는 석탄회 조립물의 혼합비율에 따른 오염 퇴적물의 간극수 수질 변화를 조사하였다. 석탄회 조립물의 혼합비율을 각각 퇴적물 체적비의 0%, 10%, 30%, 50%로 구성하여 메조코즘 실험을 수행하였다. 하계 및 동계에 퇴적물의 성상 변화를 분석한 결과에 따르면, 혼합 비율이 증가함에 따라 pH가 증가하는 것으로 나타나 석탄회 조립물은 산성화된 퇴적물을 중화시키는데 기여할 수 있을 것으로 판단된다. 인산염 및 암모니아 농도는 혼합비 30%, 50%에서 대조구 대비 유의하게 감소하였다(p < 0.05). 황화수소 농도는 혼합비 10%에서 72% 감소되었으며, 혼합비 30%, 50%에서는 황화수소가 검출되지 않았다. 퇴적물의 산소소비속도를 측정한 결과 혼합비 30%, 50%에서 산소소비속도가 가장 느린 것으로 나타났다. 본 연구를 통해 석탄회 조립물은 사용량에 비례하여 오염 퇴적물의 간극수 수질을 변화시킬 수 있는 재료임을 확인하였다. 그러나 혼합비 30%와 50% 간의 효과가 크게 다르지 않은 것으로 나타나 경제적인 측면을 고려했을 때 퇴적물 체적의 30%만큼 혼합하는 것이 적합한 것으로 결론지을 수 있다.

Keywords

References

  1. Asaoka, S., Hayakawa, S., Kim, K.H., Takeda, K., Katayama, M. and Yamamoto, T. (2012). Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash. Journal of Colloid and Interface Science, 377, 284-290. https://doi.org/10.1016/j.jcis.2012.03.023
  2. Cho, D.C., Bae, H.J., Kwon, S.H. and Lee, J.Y. (2010). Environmental change and its enhancement of a bay sediment by using useful microbial and chemical treatments. Journal of the Environmental Sciences, 11, 1355-1365.
  3. Kanjanarong, J., Giri, B.S., Jaisi, D.P., Oliveira, F.R., Boonsawang, P., Chaiprapat, S., Singh, R.S., Balakrishna, A. and Khanal, S.K. (2016). Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: Evaluation of efficiency and mechanisms. Bioresource Technology, 234, 115-121.
  4. Kim, K.H., Hibino, T., Yamamoto, T., Hayakawa, S., Mito, Y., Nakamoto, K. and Lee, I.C. (2014). Field experiments on remediation of coastal sediments using granulated coal ash. Marine Pollution Bulletin, 83, 132-137. https://doi.org/10.1016/j.marpolbul.2014.04.008
  5. Lee, S.G. (2008). Study for Effective Protection Methods and the Present State of Coastal Erosion Korea. Doctoral Thesis. Pukyong National University, 5.
  6. Maeng, J.H., Kim, T.Y., Cho, H.N. and Kim, E.Y. (2015). Minimizing environmental impact of ash treatment in thermal power plants(II). Kor. Environ. Inst., 4-12
  7. Martins, M.C., Santos, E.B.H. and Marques, C.R. (2016). First study on oyster-shell-based phosphate removal in saltwater-A proxy to effluent bioremediation of marine aquaculture. Science of the Total Environment, 574, 605-615.
  8. Yamamoto, T., Harada, K., Kim, K.H., Asaoka, S. and Yoshioka, I. (2013). Suppression of phosphate release from coastal sediments using granulated coal ash. Estuarine, Coastal and Shelf Science, 116, 41-49. https://doi.org/10.1016/j.ecss.2012.06.010
  9. Li, Y., Fan, Y., Li, X. and Wu, D. (2017). Evaluation of zeolite& hydrous aluminum oxide as a sediment capping agent to reduce nutrients level in a pond. Journal of the Ecological Engineering 101, 170-178. https://doi.org/10.1016/j.ecoleng.2017.02.011