• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.029 seconds

Pragmatic Assessment of Optimizers in Deep Learning

  • Ajeet K. Jain;PVRD Prasad Rao ;K. Venkatesh Sharma
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.115-128
    • /
    • 2023
  • Deep learning has been incorporating various optimization techniques motivated by new pragmatic optimizing algorithm advancements and their usage has a central role in Machine learning. In recent past, new avatars of various optimizers are being put into practice and their suitability and applicability has been reported on various domains. The resurgence of novelty starts from Stochastic Gradient Descent to convex and non-convex and derivative-free approaches. In the contemporary of these horizons of optimizers, choosing a best-fit or appropriate optimizer is an important consideration in deep learning theme as these working-horse engines determines the final performance predicted by the model. Moreover with increasing number of deep layers tantamount higher complexity with hyper-parameter tuning and consequently need to delve for a befitting optimizer. We empirically examine most popular and widely used optimizers on various data sets and networks-like MNIST and GAN plus others. The pragmatic comparison focuses on their similarities, differences and possibilities of their suitability for a given application. Additionally, the recent optimizer variants are highlighted with their subtlety. The article emphasizes on their critical role and pinpoints buttress options while choosing among them.

Machine Learning-Based Reversible Chaotic Masking Method for User Privacy Protection in CCTV Environment

  • Jimin Ha;Jungho Kang;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.767-777
    • /
    • 2023
  • In modern society, user privacy is emerging as an important issue as closed-circuit television (CCTV) systems increase rapidly in various public and private spaces. If CCTV cameras monitor sensitive areas or personal spaces, they can infringe on personal privacy. Someone's behavior patterns, sensitive information, residence, etc. can be exposed, and if the image data collected from CCTV is not properly protected, there can be a risk of data leakage by hackers or illegal accessors. This paper presents an innovative approach to "machine learning based reversible chaotic masking method for user privacy protection in CCTV environment." The proposed method was developed to protect an individual's identity within CCTV images while maintaining the usefulness of the data for surveillance and analysis purposes. This method utilizes a two-step process for user privacy. First, machine learning models are trained to accurately detect and locate human subjects within the CCTV frame. This model is designed to identify individuals accurately and robustly by leveraging state-of-the-art object detection techniques. When an individual is detected, reversible chaos masking technology is applied. This masking technique uses chaos maps to create complex patterns to hide individual facial features and identifiable characteristics. Above all, the generated mask can be reversibly applied and removed, allowing authorized users to access the original unmasking image.

Comparative Analysis of Effective Algorithm Techniques for the Detection of Syn Flooding Attacks (Syn Flooding 탐지를 위한 효과적인 알고리즘 기법 비교 분석)

  • Jong-Min Kim;Hong-Ki Kim;Joon-Hyung Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.73-79
    • /
    • 2023
  • Cyber threats are evolving and becoming more sophisticated with the development of new technologies, and consequently the number of service failures caused by DDoS attacks are continually increasing. Recently, DDoS attacks have numerous types of service failures by applying a large amount of traffic to the domain address of a specific service or server. In this paper, after generating the data of the Syn Flooding attack, which is the representative attack type of bandwidth exhaustion attack, the data were compared and analyzed using Random Forest, Decision Tree, Multi-Layer Perceptron, and KNN algorithms for the effective detection of attacks, and the optimal algorithm was derived. Based on this result, it will be useful to use as a technique for the detection policy of Syn Flooding attacks.

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

Formal Verification of Twin Clutch Gear Control System

  • Muhammad Zaman;Amina Mahmood;Muhammad Atif;Muhammad Adnan Hashmi;Muhammad Kashif;Mudassar Naseer
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.151-159
    • /
    • 2024
  • Twin clutch model enables the power-shifts as conventional planetary automatic transmission and eradicates the disadvantages of single clutch trans- mission. The automatic control of the dual clutches is a problem. Particularly to control the clutching component that engages when running in one direction of revolution and disengages when running the other direction, which exchange the torque smoothly during torque phase of the gearshifts on planetary-type automatic transmissions, seemed for quite a while hard to compensate through clutch control. Another problem is to skip gears during multiple gearshifts. However, the twin clutch gear control described in ["M Goetz, M C Levesley and D A Crolla. Dynamics and control of gearshifts on twin clutch transmissions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2005"], a significant improvement in twin clutch gear control system is discussed. In this research our objective is to formally specify the twin clutch gear control system and verify it with the help of formal methods. Formal methods have a high potential to give correctness estimating techniques. We use UPPAAL for formal specification and verification. Our results show that the twin clutch gear control model partially fulfills its functional requirements.

Convolutional Neural Network Based Plant Leaf Disease Detection

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.107-112
    • /
    • 2024
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.

Deconstructing Agile Survey to Identify Agile Skeptics

  • Entesar Alanazi;Mohammad Mahdi Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.201-210
    • /
    • 2024
  • In empirical software engineering research, there is an increased use of questionnaires and surveys to collect information from practitioners. Typically, such data is then analyzed based on overall, descriptive statistics. Overall, they consider the whole survey population as a single group with some sampling techniques to extract varieties. In some cases, the population is also partitioned into sub-groups based on some background information. However, this does not reveal opinion diversity properly as similar opinions can exist in different segments of the population, whereas people within the same group might have different opinions. Even though existing approach can capture the general trends there is a risk that the opinions of different sub-groups are lost. The problem becomes more complex in case of longitudinal studies where minority opinions might fade or resolute over time. Survey based longitudinal data may have some potential patterns which can be extracted through a clustering process. It may reveal new information and attract attention to alternative perspectives. We suggest using a data mining approach to finding the diversity among the different groups in longitudinal studies (agile skeptics). In our study, we show that diversity can be revealed and tracked over time with the use of clustering approach, and the minorities have an opportunity to be heard.

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

Analysis of Reviews from Metaverse Platform Users Based on Topic Modeling

  • Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.93-104
    • /
    • 2024
  • This study conducts an in-depth analysis of user reviews from three leading metaverse platforms - Minecraft, Roblox, and Zepeto - using advanced topic modeling techniques to uncover key factors for business success. By examining a substantial dataset of user feedback, we identified and categorized the main themes and concerns expressed by users. Our analysis revealed that common issues across all platforms include technical functionality problems, user engagement and interest, payment concerns, and connection difficulties. Specifically, Minecraft users highlighted the importance of adventure and creativity, Roblox users expressed significant concerns about security and fraud, and Zepeto users focused heavily on the fairness of the in-game economy. The findings suggest that for metaverse platforms to achieve sustained success, they must prioritize the resolution of technical issues, enhance features that foster user engagement, ensure reliable connectivity, and address platform-specific concerns such as security for Roblox and payment fairness for Zepeto. These insights provide valuable guidance for developers and business strategists, emphasizing the need for robust technical infrastructure, engaging and diverse content, seamless user access, and transparent and fair economic systems. By addressing these key areas, metaverse platforms can improve user satisfaction, build a loyal user base, and secure long-term success in an increasingly competitive market.

Enhanced CT-image for Covid-19 classification using ResNet 50

  • Lobna M. Abouelmagd;Manal soubhy Ali Elbelkasy
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.119-126
    • /
    • 2024
  • Disease caused by the coronavirus (COVID-19) is sweeping the globe. There are numerous methods for identifying this disease using a chest imaging. Computerized Tomography (CT) chest scans are used in this study to detect COVID-19 disease using a pretrain Convolutional Neural Network (CNN) ResNet50. This model is based on image dataset taken from two hospitals and used to identify Covid-19 illnesses. The pre-train CNN (ResNet50) architecture was used for feature extraction, and then fully connected layers were used for classification, yielding 97%, 96%, 96%, 96% for accuracy, precision, recall, and F1-score, respectively. When combining the feature extraction techniques with the Back Propagation Neural Network (BPNN), it produced accuracy, precision, recall, and F1-scores of 92.5%, 83%, 92%, and 87.3%. In our suggested approach, we use a preprocessing phase to improve accuracy. The image was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, which was followed by cropping the image before feature extraction with ResNet50. Finally, a fully connected layer was added for classification, with results of 99.1%, 98.7%, 99%, 98.8% in terms of accuracy, precision, recall, and F1-score.