• Title/Summary/Keyword: Secure IoT

Search Result 251, Processing Time 0.032 seconds

Stability-based On-demand Multi-path Distance Vector Protocol for Edge Internet of Things

  • Dongzhi Cao;Peng Liang;Tongjuan Wu;Shiqiang Zhang;Zhenhu Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2658-2681
    • /
    • 2023
  • In edge computing scenarios, IoT end devices play a crucial role in relaying and forwarding data to significantly improve IoT network performance. However, traditional routing mechanisms are not applicable to this scenario due to differences in network size and environment. Therefore, it becomes crucial to establish an effective and reliable data transmission path to ensure secure communication between devices. In this paper, we propose a trusted path selection strategy that comprehensively considers multiple attributes, such as link stability and edge cooperation, and selects a stable and secure data transmission path based on the link life cycle, energy level, trust level, and authentication status. In addition, we propose the Stability-based On-demand Multipath Distance Vector (STAOMDV) protocol based on the Ad hoc AOMDV protocol. The STAOMDV protocol implements the collection and updating of link stability attributes during the route discovery and maintenance process. By integrating the STAOMDV protocol with the proposed path selection strategy, a dependable and efficient routing mechanism is established for IoT networks in edge computing scenarios. Simulation results validate that the proposed STAOMDV model achieves a balance in network energy consumption and extends the overall network lifespan.

Novel Method for DNA-Based Elliptic Curve Cryptography for IoT Devices

  • Tiwari, Harsh Durga;Kim, Jae Hyung
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.396-409
    • /
    • 2018
  • Elliptic curve cryptography (ECC) can achieve relatively good security with a smaller key length, making it suitable for Internet of Things (IoT) devices. DNA-based encryption has also been proven to have good security. To develop a more secure and stable cryptography technique, we propose a new hybrid DNA-encoded ECC scheme that provides multilevel security. The DNA sequence is selected, and using a sorting algorithm, a unique set of nucleotide groups is assigned. These are directly converted to binary sequence and then encrypted using the ECC; thus giving double-fold security. Using several examples, this paper shows how this complete method can be realized on IoT devices. To verify the performance, we implement the complete system on the embedded platform of a Raspberry Pi 3 board, and utilize an active sensor data input to calculate the time and energy required for different data vector sizes. Connectivity and resilience analysis prove that DNA-mapped ECC can provide better security compared to ECC alone. The proposed method shows good potential for upcoming IoT technologies that require a smaller but effective security system.

The Design and Implementation of IoT-Based Radon Measurement Control System (IoT 기반 라돈 측정 제어시스템 설계 및 구현)

  • Ahn, Heuihak;Gu, Jayeong;Lee, Sangyoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper is a IoT-based radon meter control system and a radon meter control method using it. The IoT-based radon meter control system is control system for controlling a radon meter by network-connecting radon meter and a user terminal. The radon measuring device may be provided with a radon sensor to measure a radon value of a preset management target area, it collect and store numerical data. The radon meter control system monitors the condition of the radon meter, it includes control center configured to deliver radon meter management information generated to a user terminal. Also radon measurements to determine the exact amount of radon gas. Therefore, the situation-specific actions based on radon numbers can be promptly implemented to ensure adequate protection for those who are vulnerable to radon and those who live in the area. Condition monitoring allows the radon meter to respond quickly to failure or failure of the radon meter. In addition, it is possible to secure a baseline of radon's influence and to obtain research data to cope with radon by establishing big data with radon measurements.

Design of Real-Time Vehicle Information Management Platform Using an IoT-based Gateway (IoT기반 게이트웨이를 활용한 실시간 차량 정보 관리 플랫폼 설계)

  • Chang, Moon-Soo;Lee, Jeong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.548-551
    • /
    • 2018
  • Most vehicles are in the form of maintenance when a problem occurs by the user himself or herself. During maintenance, users are not able to operate the car while it is being serviced, and if the target vehicle is a revenue-generating vehicle, they will have to bear economic losses. Collecting vehicle information in real time, identifying problems that could arise with a vehicle based on the collected big data and providing advance service rather than after-sales service can help secure vehicle operation and reduce economic loss. Thus, in this thesis, a platform was designed to design IoT-based gateways, collect real-time vehicle information, and organize big data to provide vehicle information in real time.

  • PDF

Towards Designing Efficient Lightweight Ciphers for Internet of Things

  • Tausif, Muhammad;Ferzund, Javed;Jabbar, Sohail;Shahzadi, Raheela
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4006-4024
    • /
    • 2017
  • Internet of Things (IoT) will transform our daily life by making different aspects of life smart like smart home, smart workplace, smart health and smart city etc. IoT is based on network of physical objects equipped with sensors and actuators that can gather and share data with other objects or humans. Secure communication is required for successful working of IoT. In this paper, a total of 13 lightweight cryptographic algorithms are evaluated based on their implementation results on 8-bit, 16-bit, and 32-bit microcontrollers and their appropriateness is examined for resource-constrained scenarios like IoT. These algorithms are analysed by dissecting them into their logical and structural elements. This paper tries to investigate the relationships between the structural elements of an algorithm and its performance. Association rule mining is used to find association patterns among the constituent elements of the selected ciphers and their performance. Interesting results are found on the type of element used to improve the cipher in terms of code size, RAM requirement and execution time. This paper will serve as a guideline for cryptographic designers to design improved ciphers for resource constrained environments like IoT.

Study IoT Asset Management System Based on Block-Chain Framework (블록체인 프레임워크 기반 IoT 자산관리시스템)

  • Kang, Sung Won;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.94-98
    • /
    • 2019
  • In this paper, we developed the tools enabling to manage the IoT systems owned by managers. Since equipment agents consists based on open-source block-chain framework, we can secure the invariance on data and furthermore can locate the resources by searching the AP connected to the equipments. Also the manager can trace the connecting details on equipments from their block-chain accounts. In addition, we work on the possibility of protecting ARP poisoning attacks by removing the credibility on additional ARP requests being generated during the process of network creation.

IIoTBC: A Lightweight Block Cipher for Industrial IoT Security

  • Juanli, Kuang;Ying, Guo;Lang, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.97-119
    • /
    • 2023
  • The number of industrial Internet of Things (IoT) users is increasing rapidly. Lightweight block ciphers have started to be used to protect the privacy of users. Hardware-oriented security design should fully consider the use of fewer hardware devices when the function is fully realized. Thus, this paper designs a lightweight block cipher IIoTBC for industrial IoT security. IIoTBC system structure is variable and flexibly adapts to nodes with different security requirements. This paper proposes a 4×4 S-box that achieves a good balance between area overhead and cryptographic properties. In addition, this paper proposes a preprocessing method for 4×4 S-box logic gate expressions, which makes it easier to obtain better area, running time, and power data in ASIC implementation. Applying it to 14 classic lightweight block cipher S-boxes, the results show that is feasible. A series of performance tests and security evaluations were performed on the IIoTBC. As shown by experiments and data comparisons, IIoTBC is compact and secure in industrial IoT sensor nodes. Finally, IIoTBC has been implemented on a temperature state acquisition platform to simulate encrypted transmission of temperature in an industrial environment.

Artificial Intelligence Inspired Intelligent Trust Based Routing Algorithm for IoT

  • Kajol Rana;Ajay Vikram Singh;P. Vijaya
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.149-161
    • /
    • 2023
  • Internet of Things (IoT) is a relatively new concept that has gained immense popularity in a short period of time due to its wide applicability in making human life more convenient and automated. As an illustration: the development of smart homes, smart cities, etc. However, it is also accompanied by a substantial number of risks and flaws. IoT makes use of low-powered devices, so secure, less time-consuming and energy-intensive transmission (routing) of messages due to the limited availability of energy is one of the many and most significant concerns for IoT developers. The following paper presents a trust-based routing scenario for the Internet of Things (IoT) that exploits the past transmission record from the cupcarbon simulator's log files. Artificial Neural Network is used to quantify knowledge of trust, calculate the value of trust, and share this information with other network devices. As a human behavioural pattern, trust provides a superior method for making routing decisions. If there is a tie in the trust values and no other path is available, the remaining battery power is used to break the tie and make a forwarding decision; this is also seen as a more efficient use of the available resources. The proposed algorithm is observed to have superior energy consumption and routing decisions compared to conventional routing algorithms, and it improves the communication pattern.

A Study on the Secure Communication at Android Things Environment using the SEED Library (SEED 암호 라이브러리를 활용한 안전한 Android Things 통신 환경연구)

  • Park, Hwa Hyeon;Yoon, Mi Kyung;Lee, Hyeon Ju;Lee, Hae Young;Kim, Hyung-Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.67-74
    • /
    • 2019
  • As the market for Internet of Things (IoT) service grows, the security issue of the data from IoT devices becomes more important. In this paper, we implemented a cryptographic library for confidentiality of sensor data from Android Things based IoT services. The library made use of the SEED algorithm for encryption/decryption of data and we verified the library by implementing a service environment. With the library, the data is securely encrypted and stored in the database and the service environment is able to represent the current sensing status with the decrypted sensor data. The contribution of this work is in verifying the usability of SEED based encryption library by implementation in IoT sensor based service environment.

A USB classification system using deep neural networks (인공신경망을 이용한 USB 인식 시스템)

  • Woo, Sae-Hyeong;Park, Jisu;Eun, Seongbae;Cha, Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.535-538
    • /
    • 2022
  • For Plug & Play of IoT devices, we develop a module that recognizes the type of USB, which is a typical wired interface of IoT devices, through image recognition. In order to drive an IoT device, a driver for communication and device hardware is required. The wired interface for connecting to the IoT device is recognized by using the image obtained through the camera of smartphone shooting to recognize the corresponding communication interface. For USB, which is a most popular wired interface, types of USB are classified through artificial neural network-based machine learning. In order to secure sufficient data set of artificial neural networks, USB images are collected through the Internet, and additional image data sets are secured through image processing. In addition to the convolution neural networks, recognizers are implemented with various deep artificial neural networks, and their performance is compared and evaluated.

  • PDF