• Title/Summary/Keyword: Secure Databases

Search Result 48, Processing Time 0.024 seconds

A COMPARATIVE STUDY ON BLOCKCHAIN DATA MANAGEMENT SYSTEMS: BIGCHAINDB VS FALCONDB

  • Abrar Alotaibi;Sarah Alissa;Salahadin Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.128-134
    • /
    • 2023
  • The widespread usage of blockchain technology in cryptocurrencies has led to the adoption of the blockchain concept in data storage management systems for secure and effective data storage and management. Several innovative studies have proposed solutions that integrate blockchain with distributed databases. In this article, we review current blockchain databases, then focus on two well-known blockchain databases-BigchainDB and FalconDB-to illustrate their architecture and design aspects in more detail. BigchainDB is a distributed database that integrates blockchain properties to enhance immutability and decentralization as well as a high transaction rate, low latency, and accurate queries. Its architecture consists of three layers: the transaction layer, consensus layer, and data model layer. FalconDB, on the other hand, is a shared database that allows multiple clients to collaborate on the database securely and efficiently, even if they have limited resources. It has two layers: the authentication layer and the consensus layer, which are used with client requests and results. Finally, a comparison is made between the two blockchain databases, revealing that they share some characteristics such as immutability, low latency, permission, horizontal scalability, decentralization, and the same consensus protocol. However, they vary in terms of database type, concurrency mechanism, replication model, cost, and the usage of smart contracts.

A Distributed Altruistic Locking Scheme For Multilevel Secure Database in Wireless Mobile Network Environments (무선 이동 네트워크 환경에서 다단계 보안 데이터베이스를 위한 분산 이타적 잠금 기법)

  • Kim, Hee-Wan;Park, Dong-Soon;Rhee, Hae-Kyung;Kim, Ung-Mo
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.235-242
    • /
    • 2002
  • We propose an advanced transaction scheduling protocol for concurrency control of multilevel secure databases in wireless mobile network environment. Wireless communication is characterized by frequent spurious disconnections. So short-lived transaction must quickly access database without any delay by long-lived one. We adapted two-phase locking protocol, namely traditional syntax-oriented serializability notions, to multilevel secure databases in wireless mobile network environment. Altruistic locking, as an advanced protocol, has attempted to reduce delay effect associated with lock release moment by use of the idea of donation. An improved form of a1truism has also been deployed for extended a1truistic locking. This is in a way that scope of data to he early released is enlarged to include even data initially not intended to be donated. Our protocol is based on extended altruistic locking, but a new method, namely bi-directional donation locking for multilevel secure databases (MLBiDL), is additionally used in order to satisfy security requirements and concurrency. We showed the Simulation experiments that MLBiDL outperforms the other locking protocols in terms of the degree of throughput and average waiting time.

One-Snapshot Algorithm for Secure Transaction Management in Electronic Stock Trading Systems (전자 주식 매매 시스템에서의 보안 트랜잭션 관리를 위한 단일 스냅샷 알고리즘)

  • 김남규;문송천;손용락
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.209-224
    • /
    • 2003
  • Recent development of electronic commerce enables the use of Electronic Stock Trading Systems(ESTS) to be expanded. In ESTS, information with various sensitivity levels is shared by multiple users with mutually different clearance levels. Therefore, it is necessary to use Multilevel Secure Database Management Systems(MLS/DBMSs) in controlling concurrent execution among multiple transactions. In ESTS, not only analytical OLAP transactions, but also mission critical OLTP transactions are executed concurrently, which causes it difficult to adapt traditional secure transaction management schemes to ESTS environments. In this paper, we propose Secure One Snapshot(SOS) protocol that is devised for Secure Transaction Management in ESTS. By maintaining additional one snapshot as well as working database SOS blocks covert-channel efficiently, enables various real-time transaction management schemes to be adapted with ease, and reduces the length of waiting queue being managed to maintain freshness of data by utilizing the characteristics of less strict correctness criteria. In this paper, we introduce the process of SOS protocol with some examples, and then analyze correctness of devised protocol.

RDB-based XML Access Control Model with XML Tree Levels (XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델)

  • Kim, Jin-Hyung;Jeong, Dong-Won;Baik, Doo-Kwon
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.129-145
    • /
    • 2009
  • As the secure distribution and sharing of information over the World Wide Web becomes increasingly important, the needs for flexible and efficient support of access control systems naturally arise. Since the eXtensible Markup Language (XML) is emerging as the de-facto standard format of the Internet era for storing and exchanging information, there have been recently, many proposals to extend the XML model to incorporate security aspects. To the lesser or greater extent, however, such proposals neglect the fact that the data for XML documents will most likely reside in relational databases, and consequently do not utilize various security models proposed for and implemented in relational databases. In this paper, we take a rather different approach. We explore how to support security models for XML documents by leveraging on techniques developed for relational databases considering object perspective. More specifically, in our approach, (1) Users make XML queries against the given XML view/schema, (2) Access controls for XML data are specified in the relational database, (3) Data are stored in relational databases, (4) Security check and query evaluation are also done in relational databases, and (5) Controlling access control is executed considering XML tree levels

  • PDF

Searchable Encrypted String for Query Support on Different Encrypted Data Types

  • Azizi, Shahrzad;Mohammadpur, Davud
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4198-4213
    • /
    • 2020
  • Data encryption, particularly application-level data encryption, is a common solution to protect data confidentiality and deal with security threats. Application-level encryption is a process in which data is encrypted before being sent to the database. However, cryptography transforms data and makes the query difficult to execute. Various studies have been carried out to find ways in order to implement a searchable encrypted database. In the current paper, we provide a new encrypting method and querying on encrypted data (ZSDB) for different data types. It is worth mentioning that the proposed method is based on secret sharing. ZSDB provides data confidentiality by dividing sensitive data into two parts and using the additional server as Dictionary Server. In addition, it supports required operations on various types of data, especially LIKE operator functioning on string data type. ZSDB dedicates the largest volume of execution tasks on queries to the server. Therefore, the data owner only needs to encrypt and decrypt data.

Secure Healthcare Management: Protecting Sensitive Information from Unauthorized Users

  • Ko, Hye-Kyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.82-89
    • /
    • 2021
  • Recently, applications are increasing the importance of security for published documents. This paper deals with data-publishing where the publishers must state sensitive information that they need to protect. If a document containing such sensitive information is accidentally posted, users can use common-sense reasoning to infer unauthorized information. In recent studied of peer-to-peer databases, studies on the security of data of various unique groups are conducted. In this paper, we propose a security framework that fundamentally blocks user inference about sensitive information that may be leaked by XML constraints and prevents sensitive information from leaking from general user. The proposed framework protects sensitive information disclosed through encryption technology. Moreover, the proposed framework is query view security without any three types of XML constraints. As a result of the experiment, the proposed framework has mathematically proved a way to prevent leakage of user information through data inference more than the existing method.

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

Optimistic Concurrency Control for Secure Real-Time Database Systems (실시간 보안 데이타베이스 시스템을 위한 낙관적 동시성 제어 기법)

  • Kim, Dae-Ho;Jeong, Byeong-Soo;Lee, Sung-Young
    • Journal of KIISE:Databases
    • /
    • v.27 no.1
    • /
    • pp.42-52
    • /
    • 2000
  • In many real time applications that the system maintains sensitive information to be shared by multiple users with different security levels, security is another important requirement. A secure real time database system must satisfy not only logical data consistency but also timing constrains and security requirements associated with transactions. Even though an optimistic concurrency control method outperforms locking based method in firm real time database systems, where late transactions are immediately discarded, most existing secure real time concurrency control methods are based on locking. In this paper, we propose a new optimistic concurrency control protocol for secure real time database systems, and compare the performance characteristics of our protocol with locking based method while varying workloads. The result shoes that our proposed O.C.C protocol has good performance in case of many data conflict.

  • PDF

Efficient Access Control Labeling for Secure Query Processing on Dynamic XML Data Streams (동적 XML 데이타 스트링의 안전한 질의 처리를 위한 효율적인 접근제어 레이블링)

  • An, Dong-Chan;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.180-188
    • /
    • 2009
  • Recently, the needs for an efficient and secure access control method of dynamic XML data in a ubiquitous data streams environment have become an active research area. In this paper, we proposed an improved role-based prime number labeling scheme for an efficient and secure access control labeling method in dynamic XML data streams. And we point out the limitations of existing access control and labeling schemes for XML data assuming that documents are frequently updated. The improved labeling method where labels are encoded ancestor-descendant and sibling relationships between nodes but need not to be regenerated when the document is updated. Our improved role-based prime number labeling scheme supports an infinite number of updates and guarantees the arbitrary nodes insertion at arbitrary position of the XML tree without label collisions. Also we implemented an efficient access control using a role-based prime number labeling. Finally, we have shown that our approach is an efficient and secure through experiments.

An Efficient and Secure Query Processing on Valid XML Streams (유효한 XML 스트링에 대한 효율적이고 안전한 질의 처리)

  • Byun, Chang-Woo;An, Eun-Ju;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.235-246
    • /
    • 2009
  • As demands intending to treat an access control on a client side that was conventionally controlled at a server are surged. it needs a way to treat query processing in effective and secure manners in an environment that has limited resources. Because the access control having been previously performed was only focused on safety, there was little effort to consider the access control in terms of efficiency. Researches about security including access control are started as the security issues are cropped up in a recent stream environment. This paper proposes a method for efficient and secure query processing of XML data streams like a PDA and a portable terminal at the client that is in limited resources. Specifically, this study suggests (1) an access control processing that possesses small overhead for attaining a secure result in a limited memory and (2) a way to enhance the performance, finding the parts being capable of optimizing in each processing step for offsetting the overhead caused by an addition of the access control processing. Superiority of the new method was analyzed by experiment.