
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, Oct. 2020 4198
Copyright ⓒ 2020 KSII

http://doi.org/10.3837/tiis.2020.10.015 ISSN : 1976-7277

Searchable Encrypted String for Query
Support on Different Encrypted Data Types

Shahrzad Azizi1 and Davud Mohammadpur1*

1 University of Zanajn
Zanjan, Iran

[e-mail: azizi.shahrzad@znu.ac.ir, dmp@znu.ac.ir]
* Corresponding Author: Davud Mohammadpur

Received March 29, 2020; revised June 3, 2020; revised July 12, 2020; revised July 22, 2020;

accepted September 5, 2020; published October 31, 2020

Abstract

Data encryption, particularly application-level data encryption, is a common solution to
protect data confidentiality and deal with security threats. Application-level encryption is a
process in which data is encrypted before being sent to the database. However, cryptography
transforms data and makes the query difficult to execute. Various studies have been carried out
to find ways in order to implement a searchable encrypted database. In the current paper, we
provide a new encrypting method and querying on encrypted data (ZSDB) for different data
types. It is worth mentioning that the proposed method is based on secret sharing. ZSDB
provides data confidentiality by dividing sensitive data into two parts and using the additional
server as Dictionary Server. In addition, it supports required operations on various types of
data, especially LIKE operator functioning on string data type. ZSDB dedicates the largest
volume of execution tasks on queries to the server. Therefore, the data owner only needs to
encrypt and decrypt data.

Keywords: Data Encryption, Queryable Encryption, Secure Databases, Secure SQL Queries,
Secret Sharing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4199

1. Introduction

There are numerous threats against information privacy and security in data storing,
especially data outsourcing. These threats can be categorized as internal or external. Due to the
sensitive nature of data, maintaining confidentiality is the challenge that appears.
Confidentiality of data makes data content unavailable to unauthorized users. In this way, data
owners need to encrypt data before storing sensitive data and executing queries [1], [2].

Data encryption [3], particularly application-level encryption, is a common solution to
protect data confidentiality and face security threats. Application-level encryption is a process
in which data is encrypted before being sent to the database [4]. Application level Data
Encryption has several benefits including,

• Safe against alteration: Others cannot change data without permission.
• Ensure compliance: One can be sure that rules and policies on data are followed [4].
• Backups are safe: Others cannot use backup.
• Prevent data leakage: Data capture will not be possible through eavesdropping [5].
• Move data Securly: The transfer and use of data will be in secure condition.

In order to reach the abovementioned benefits, data owner converts his/her data into an
encrypted form before storing. Since encryption and data transformation can lead to the
elimination of the main features (for example, length and format) of data, an important
challenge that arises is the execution of SQL queries on encrypted data, which will be
addressed in this study.

Homogeneous encryption methods such as FHE as well as PHE can be used to execute
queries on the encrypted data. The purpose of homomorphic encryption is to allow
computation on encrypted data. The FHE encryption methods make it possible to perform all
types of processing and execute all types of queries on encrypted data. However, the important
issue is the high cost of execution. Therefore, these methods are used limitedly and have had
no widespread acceptance so far [6]. In contrast, PHE methods allow only some types of
processing and queries on the encrypted data. Since the type of data is specific for each PHE
methods, it is necessary to use a different method for each data type. The use of these methods
is complicated and infeasible [7]. Another method is the secret sharing [8]. In secret sharing,
each sensitive data element, called a secret, is split into n shares, which are distributed to multi
server, and no one can recover the plain values by its own shares [9].

Although the purpose of the mentioned methods is to provide a suitable solution to the
problem of executing queries on encrypted data, an appropriate one has not been provided yet.
Without a suitable solution, databases with encrypted data cannot be used to protect data, and
users have to store data without encryption which can bring about various data threats.

The current study aims to present a secure query executing method based on the secret
sharing model. Since the server is considered as trusted but curious one, the server stores the
sensitive data in a encrypted form, and the keys are retained by the data owner. Accordingly,
data cannot be decrypted on the server and data security is well guaranteed.

The rest of the paper is organized as follows: Section 2 presents the related works. Section
3 discusses the proposed architecture, the data model and the main idea. Section 4 is about the
proposed method concerning how to encrypt and decrypt the data. Security analysis is

4200 Azizi et al.: Searchable Encrypted String for Query Support on Different Encrypted Data Types

provided in Section 5. Section 6 represents evaluation of the proposed method. Finally,
Section 7 concludes the paper.

2. Related Works
Review of the related works shows that there have been countless attempts to develop
queryable encrypted databases. These attempts should be able to support required operations
on various data types in addition to maintaining the confidentiality of data. Since the operators
on each data type are different, encryption methods should have various facilities. Owing to
the importance of supporting all data types (numerical and string), related methods are
examined based on their capability to support various data types. Most methods support
numerical data types and a limited number of them are provided for string data.

2.1 Numerical Data Type
Generally, in order to provide information security and prevent internal attacks, three main
approaches have been developed: Index based methods [10], [11], Homomorphism
encryptions [12], [13] and Secret sharing methods [9], [14]. All of these approaches can be
applied to numerical data types.

2.1.1 Index Based Methods
A common technique to speed up the execution of queries is to use pre-computed indexes.
However, once the data is encrypted, the use of standard indexes is not possible. In the index
base methods to create encryption index, the attribute domain is usually divided into a set of
non-overlapping parts. Assigning explicit tags to each part, the attribute values are mapped to
the corresponding part. In encrypted databases, the encryption index has a significant role in
query performance and can accelerate it [10].

An early work [10] suggests encrypting the whole record and assigning a set_identifier to
each value in the record. When searching a specific value, its set_identifier is calculated and
then passed to the server. The server returns a collection of all records with values assigned to
the same set to the client. Finally, the client searches the specific value in the returned
collection and retrieves the desired records. This method is suitable for executing equation
conditions and range queries, but it is not possible to perform aggregation functions such as
SUM, MIN and MAX [15]. To meet the requirements of aggregation functions, in [11],
authors made an attempt to use preprocessing functions and additional tables which leads to
high cost and extra overhead.

2.1.2 Homomorphic Encryption Based Methods
Various attempts such as CryptDB [12] have been made regarding homomorphic encryption.
CryptDB has proposed the idea of encrypt attributes at different levels, such as onion layers
[16]. It also uses a reliable proxy server to store encryption keys, database schema and onion
layers of all attributes. Moreover the data encryption, rewriting queries and decryption of
results are the responsibility of the proxy [17]. In order to process the query, the proxy checks
the required attributes and then considers the suitable layer. Consequently, it separates the
onion layers dynamically, if necessary, and assigns data computation to the appropriate layer
[16]. However, it is significant to note that the inner layers do not provide high level of
security and are vulnerable to attacks. Furthermore, onion layers create overhead, especially in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4201

the case of large tables. It should be stated that CryptDB cannot support string LIKE queries
and analytic queries [17].

MONOMI [13], which is based on CryptDB, is capable of supporting analytical queries. It
uses several optimization techniques to realize this goal. It also uses a designer to optimize the
data plan [18].

2.1.3 Secret Sharing Methods
In cryptography, secret sharing refers to any method for distributing a secret among a group of
participants, each of which allocates a share of the secret. The secret can only be reconstructed
when the shares are combined together. Individual shares are of no use on their own [19].
Secure Query Processing System (SDB) method [9] uses the secret sharing to encrypt data. As
for SDB, each sensitive data is divided into two parts in order to process a secure query[20]. A
portion of data is stored on the data owner’s side that is trustful, and the other part is stored on
the server’s side which is unreliable. Non-sensitive data is stored in plain text on the server’s
side. SDB also provides various operators that can be applied to encrypted data, plain text data,
or a combination of them [8]. However, SDB is only designed to support numerical data types
and cannot support string types [21].

2.2 String Data Type
Methods that implement queryable encrypted databases on string data types need to support
LIKE operator to search on encrypted data. These methods can be considered in three
categories: based on Bloom filter [22], [23], based on mapping [24], [25] and converting string
to number [26], [27].

2.2.1. Based on Bloom Filter
These methods convert each word into a vector using the Bloom filter and its hash functions.
Then, in the query execution, they convert entered string to a similar form. Finally, by using
the Euclidean distance calculation, the similarity of the entered string is determined with the
stored values. One of the weaknesses of these methods is the possibility of false positive
results. In addition, these methods are only suitable for searching and exact matching but
cannot support wildcards well.

2.2.2. Converting string to number
Some methods initially convert strings to numbers and then store them on the server. These
methods use the ASCII code and Unicode to encrypt English and Persian letters, respectively.
Then, they store their numerical equivalents on the server after applying encryption methods.
These methods are only suitable for searching and exact matching but cannot support
wildcards well.

2.2.3. Based On Mapping
Some methods have used mapping to support string data. SQL-based fuzzy query mechanism
over encrypted database (FQE) method in [24] initially extracts all words from the text and
then produces all combination of its unigram, bigram, and trigram forms for each word as its
statements. After that, it maps each statement to a Unicode character. Finally, using a random
algorithm shuffles the characters and saves the result. The obtained result is used in querying
steps, especially in LIKE operator. In addition, in order to decrypt, FQE adds another

4202 Azizi et al.: Searchable Encrypted String for Query Support on Different Encrypted Data Types

additional column to the table whose values are obtained using a cryptographic function. FQE
uses this additional column to decode the results.

3. Proposed Architecture
This paper provides ZSDB method that supports efficient data encryption and querying on
numeric and string data types simultaneously. As for ZSDB, data owner only needs to encrypt
data and decrypt results. Accordingly, the most workload is transferred to the server. This
method uses an additional server for storing some metadata to support the string data.

As shown in Fig. 1, the proposed architecture has three main components, including data
owner (Client), dictionary server (Server1) and encrypted data server (Server2). Initially, data
owner (Client) sends some encrypted words to the dictionary (Server1). Server1 sets an index
for each one. In fact, Server1 stores a subset of words in order to support the string queries.
Then, data owner encrypts these indexes in a way similar to the method provided for numerical
data and stores them along with other encrypted data on Server2.

Fig. 1. Storing Data in Proposed Architecture

When the user sends a query to the data owner (Client), if the query does not contain LIKE

operator, Client translates the query and then requests it from Server2. Finally, after
decrypting the returned results from Server2, they are presented to the user in plaintext.

If the request contains LIKE operator (Fig. 2), data owner (Client) must first request indexes
of the word from Server1 in order to verify the word availability on the server. Then, when
indexes are available, Fig. 2, it translates the corresponding query and requests from Server2.
Server2 sends the encrypted results to Client. After decryption, Client sends the plaintext
result to the user.

Fig. 2. Querying LIKE operator in the Proposed Architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4203

4. Proposed Method
The purpose of ZSDB is to provide secure storage and query execution on a variety of data
types, especially string data type. Accordingly, the proposed method includes some steps to
create data dictionary, encryption, querying and decryption. In what follows, subsections
describe details of each one for each data type. How to implement the proposed method is
different for each type of data, so in the following section, how to proceed with each type of
data is presented separately.

4.1. Integer Data Type

4.1.1 Encryption
The proposed method is based on the SDB [9], and integer data type values encryption is same
as SDB method. In this case, numbers n and g are considered and stored on the data owner’s
side. n is obtained from the product of two prime random numbers p and q, and g is a positive
number that is co-prime with n.

In this method, we consider a pair of random numbers m and x for each column of sensitive
data (cl) as the column key cl <m,x> whereas m, x < n and assign a random positive value rk to
each row as the row number. rk can be encrypted by homogeneous methods and stored in the
final table (Server2) along with other record information (for example, SIES [28]).

According to the secret sharing method, each data is divided into several parts. We divide it
into two parts: key and encrypted value in which the value of the key and the encrypted value
are stored on the client and server’s side, respectively.

Key generation: At this stage, considering the number of the row rk and cl <m,x> for the
column, the key of any sensitive data vk, is calculated according to (1) [9]. It should be noted
that there is no need to store vk values on the data owner’s side. It can be generated based on g,
rk and cl <m,x> values.

(, ,) modkr x
k kv gen r m x mg n= < > = (1)

Producing encrypted value: After key generation, (2) obtains the encrypted value for a
sensitive value (||v||).

1 1(,) mode k kv v v v v nε − −= = (2)
This value is calculated by the multiplication of inverse values of the key and sensitive data,

in which, (3) obtains the inverse value [8].

 1 mod 1k kv v n− = (3)
Based on this method, multiplication, addition, subtraction, comparisons and other

operations can be supported well, which can be studied further in [9].

4.1.2 Decryption
To retrieve stored data, first, data owner requests the encrypted (ve) value, which is stored on
the server. Then, according to (4), multiplies ve by the value of the key vk that can be calculated
on its side based on g, rk and cl <m,x> values. Finally, the remainder of the number n is equal
to the value of the sensitive data [9].

 mode kv v v n= (4)

4204 Azizi et al.: Searchable Encrypted String for Query Support on Different Encrypted Data Types

Fig. 3 shows the encryption and decryption steps in the proposed method in which the
value of the column key, n and g numbers are stored on the data owner's side (The value of rk is
equal to one for all records).The encrypted values are stored on the server’s side.

 Fig. 3. Integer Data Type Encryption and Decryption Steps

4.2 Real Data Type
In order to encrypt real data type values, we consider values (N) in the form (5). Then,
assigning proper values to s and M, we convert the value of N to M and s.

 10sN M= × (5)
According to (5), the result values (M and s) are integer type that can be encrypted as the

proposed method for the integer data type values.

4.3 String Data Type
The proposed method includes some steps for string data type values, including creating data
dictionary of substrings, encrypting based on substrings indexes, querying based on substrings
relationships and decrypting the results.

4.3.1 Creating Data Dictionary
In order to support string values, we use a dictionary to store a sub-set of words and put it on
Server1. First of all, data owner (Client) extracts unigram, bigram, and trigram of each word of
the string and stores them in the WORD column of DICTIONARY table on Server1. For
example, Table 1 shows a part of DICTIONARY table for "davud” and "data" words.

In the queries related to the string values, especially to support LIKE operator, we consider
three types of matching: substring matching (%str%), prefix matching (str%) and suffix
matching (%str). To support them, in DICTIONARY table, phrases are organized in the form of

Data Owner Side

𝑛𝑛 = 63, 𝑔𝑔 = 2
 𝑐𝑐𝑐𝑐𝐴𝐴 =< 2,3 > 𝑣𝑣𝑘𝑘 = 𝑚𝑚𝑔𝑔𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛

𝑣𝑣𝑒𝑒 = ⟦𝑣𝑣⟧𝑣𝑣𝑘𝑘−1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛

Encryption
Phase

Server Side

𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛

⟦𝑣𝑣⟧ = 𝑣𝑣𝑘𝑘𝑣𝑣𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛

Decryption
Phase

Data Owner Side

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4205

a tree in which each unigram refers to its associated bigrams as its Childs, and each bigram
refers to its associated trigrams as its Childs. It helps search for substrings. For instance, in
Table 1, WORD column contains encrypted phrase and the childL, childLL, childR and
childRR refer to left child (suffix matching), left-left child (suffix matching), right child
(prefix matching), right-right child (prefix matching). Left child of a word is all words that
begin with that word. Right child of a word is all words that end with.

Creating DICTIONARY table is a dynamic action, and data owner updates the table for each
new word. In fact, data owner at the same time as updating the table on Server1, encrypt the
indexes and store encrypted data in Server2.

Table 1. Example of the DICTIONARY table

Index WORD ChildL ChildR ChildLL ChildRR
00000001 d 4 13 7,14 16
00000002 a 5,11 4, 6 8,15 8
00000003 t 6 5 7
00000004 da 7,14
00000005 at 8 7
00000006 ta 8
00000007 dat
00000008 ata
00000009 v 12 11 16 14
00000010 u 13 12 15
00000011 av 15 14
00000012 vu 16 15
00000013 ud 16
00000014 dav
00000015 avu
00000016 vud

4.3.2 Encryption
For storing string data, depending on the length of the word, data owner sends the unigram,
bigram, or trigrams to Server1 and receives indexes of the word from Server1. Words with a
length greater than three characters is mapped into trigrams. Finally, data owner stores
encrypted form of indexes in Server2. For example, for "data", data owner considers the index
of both "dat", "ata" indexes. Since the index column is 8-byte, the index is encrypted as two 4
bytes. Therefore, the word "data" is ciphered and stored as E(0)E(7)E(0)E(8).

4.3.3 Searching
Concerning searching, if the user requests {LIKE "dat%"}, initially data owner extracts the
index of "dat" from Server1, and after translating the query, requests {LIKE "E(0)E(7)%"}
from Server2. In the next step, when Server2 returns the results associated with the search term,
the results are the indexes of the words. Therefore, data owner sends the indexes to Server1.
Server1 returns the statement of each index and data owner concatenates the statements and
gives the result to the user in plain text. The following subsection discusses details of
decryption.

4206 Azizi et al.: Searchable Encrypted String for Query Support on Different Encrypted Data Types

 4.3.4 Decryption
In the decryption of the string values, when Server2 returns results, each result is broken into
words. Then, for each word, data owner converts a pair of characters to a number. In the next
step, after summing up, for each 8-byte number, data owner requests the term associated with
it from Server1. Concatenating the results, data owner generates data in plain text and gives
them to the user.

5. Security Properties of ZSDB
In this section, an overview of security properties of ZSDB in encrypting, querying, and
decrypting results is provided.

Regarding security, there are two categories of attackers that can break data confidentiality,
privacy as well as integrity in outsourced databases, namely outside and inside attackers [1].
Facing these two categories of attackers, following security requirements should be taken into
account [1], [29]:

1. Encrypted data: An untrusted server should not get any information about the original
data through the results.
2. Query restriction: Only data owner and authorized users can query on stored data and
server cannot do that.
3. Encrypted queries: The queries must not reveal any information about the data on the
server’s side.
4. Decrypting in trusted side: The results must be available only for the owner so that
others cannot access plain results.

The following is an evaluation of ZSDB method in terms of above requirements.

5.1 Encrypted Results
In ZSDB, Server2 only observes some encrypted numbers obtained from some of the indexes
in Server1. In this case, since the form of the words contained in Server1 is in form of unigram,
bigram and trigram, even if the two servers collaborate, there is no way to disclose information.
Another type of attack is the frequency analysis attack. In ZSDB, the least abundance occurs in
the dictionary table. Since we store the highest level of the subset of words in the dictionary
table, this type of attack will be failed.

5.2 Query Restriction
In order to search in ZSDB, unigram, bigram and trigram of the words are stored in Server1
and only sub-set of words can be selected based on the length of the words. Since the words
stored in Server1 are sub-set of words, outside and inside attackers will have no way to search
the stored data directly.

5.3 Encrypted Queries
In ZSDB, servers can search and query on encrypted data and do not need to get plain queries.
Clients translate queries based on Server1 indexes and send only encrypted queries to Server2,
so no server will receive a plain query. Server2 runs the received query as a completely normal
SQL query. Therefore, it will not be aware of the query encryption at all. Server2 returns the
results in the form of encrypted data.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4207

5.4 Decrypting in Trusted Side
After receiving the encrypted results from Server2, data owner decrypts the values based on
Server1 indexes, and concatenates the values returned from Server1 to forms plain data. In this
way, plain data will only be available on data owner’s side, and the servers will not have any
access to the decrypted data.

6. Evaluation of ZSDB
ZSDB encrypts numerical data types based on SDB method. In [9], SDB has been evaluated
by other methods, and the ability to support a variety of operators and the reliability of the
results have been confirmed in a number of papers such as [19], [21], and [26]. Therefore, in
this section, we only evaluate ZSDB in terms of the string data type. We analyze the results
from a storage overhead and execution time perspective. Among the methods used to support
the type of string data type, we chose and implemented FQE method [24]. It is worth noting
that the chosen method is not based on the SDB method. However, according to the reviews,
we have implemented the FQE method due to its good performance and similarity to the
proposed method.
The solutions offered to support LIKE operator in recent articles such as [30] have been
towards the use of fuzzy methods and do not have 100% accuracy to provide results. Therefore,
we do not select them as methods to compare with our method. The ZSDB results are 100%
consistent with the results of a plain LIKE operator, and this feature is not seen in any of the
recent fuzzy methods.

In order to evaluate and compare the performance of ZSDB and FQE methods, tests were
performed on three computers with a 64-bit operating system, 8 GB of RAM, and an Intel Core
i5-3470 processor. We implemented Operators on Server1 and Server2 as functions in
PostgreSQL. In addition to PostgreSQL, the Java programming language was used to
implement data owner protocols. From the performance point of view, evaluation can be
evaluated from two aspects of runtime and memory cost. Furthermore, the dataset used in this
evaluation is l_comment column of line item table contained in the TPC-H data set.

6.1 Memory and Storage Overhead
Fig. 4 shows the memory and storage overhead in ZSDB and FQE methods. In the FQE, each
word with length n is converted into a term with length n (n + 1) / 2 and the storage increases
with a Quadratic-rate. Additionally, in this method, another column is added to the table.
Therefore, in large tables with a long word's length, a high storage overhead is applied to the
system. However, in ZSDB, each statement with length n turns into a word of length 2(n-2).
As a result, we are faced with linear growth (the minimum possible value) in ZSDB.

 Fig. 4. Memory and Storage Overhead

0
10
20
30
40
50
60

Len 1 Len 2 Len 3 Len 4 Len 5 Len 6 Len 7 Len 8 Len9 Len 10

En
cr

yp
te

d
w

or
d

le
ng

th

Plain text word length

ZSDB

FQE

4208 Azizi et al.: Searchable Encrypted String for Query Support on Different Encrypted Data Types

 6.2 Execution Time
We compare ZSDB and FQE performance in terms of the duration of encryption, decryption,
and search. Since, in both methods the sentences are encrypted word-by-word, we put the
scale in the length of the words and evaluate the length of the words from the variable of a
character to ten characters. Moreover, in order to achieve a precise value, we have run each
case 1000 times. The result of each run is equal to another 1000 times of the execution.

6.2.1 Encryption
Encryption is a process in which a plain text is converted to an encrypted text. Here, this
process is performed by two parts, Server1 and Client. Fig. 5 shows the encryption execution
time in ZSDB and FQE on different word lengths.

In Fig. 5, the rectangular bars represent the total execution time, and each line chart refers to
a runtime on the data Client side or Server1’s side. As shown, FQE increases with a
Quadratic-rate and ZSDB method as a linear rate. The growth of FQE is due to the division of
the word into all available subcategories as well as encryption in two different types of
encryption.

As a result, as shown in Fig. 5, FQE method spends a lot of time on data encryption. For
example, FQE method takes 5 ms for ten-letter words, while ZSDB encrypts the word for only
2 ms.

 Fig. 5. Encryption Execution Time

6.2.2 Decryption
The time required to convert the encrypted text into plain text in ZSDB and FQE is
demonstrated in Fig. 6. Based on results, decryption in FQE is fixed. However, in ZSDB, the
runtime value is increased linearly. The reason is that FQE has added an additional column to
restore the results. Therefore, at decrypting time, FQE only spends the constant time to decrypt
the corresponding column. In ZSDB, this amount of time varies. Since words with a length of
one, two and three letters are mapped to only one statement, a constant time is also used to
decode them. In the next step, as the word length increases, the decoding time also increases
linearly.

0

1000

2000

3000

4000

5000

6000

Len1 Len2 Len3 Len4 Len5 Len6 Len7 Len8 Len9 Len10

Ex
ec

ut
io

n
tim

e(
 µ

s)

Word Length

ZSDB
FQE
ZSDB Client Side
ZSDB Server1 Side
FQE Client Side
FQE Server1 Side

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4209

 Fig. 6. Decryption Execution Time

6.2.3 Searching
To evaluate the searching execution time, we consider three types of searches, including
substring, prefix, and postfix searches on words with different lengths. The results are shown
in Fig. 7.

 (a) The runtime of the suffix search (b) The runtime of the prefix search

(c) The runtime of the substring search

 Fig. 7. Search Execution Time

0
200
400
600
800

1000

Len 1 Len 2 Len 3 Len 4 Len 5 Len 6 Len 7 Len 8 Len9 Len 10

Ex
ec

ut
io

n
tim

e(
 µ

s)

Word Length

ZSDB FQE

0

200

400

600

800

1000

1200

Ex
ec

ut
io

n
tim

e(
 µ

s)

Word Length

ZSDB
FQE
ZSDB DO Side
ZSDB Server2 Side
FQE DO Side
FQE Server2 Side

0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n
tim

e(
 µ

s)

Word Length

ZSDB
FQE
ZSDB DO Side
ZSDB Server2 Side
FQE DO Side
FQE Server2 Side

0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n
tim

e(
 µ

s)

Word Length

ZSDB
FQE
ZSDB DO Side
ZSDB Server2 Side
FQE DO Side
FQE Server2 Side

4210 Azizi et al.: Searchable Encrypted String for Query Support on Different Encrypted Data Types

As shown in Fig. 7, the runtimes of searches in FQE, are almost the same. In FQE, the
searches are done by encrypting the words and direct compare on the column. However,
ZSDB encryption method has multiple steps. Therefore, in ZSDB, the length of words has
significant effects on the searches. In a search for substrings, if the word has one or two
characters, all its children must be requested from Server1. Also, in prefix and postfix searches,
all the left and right children should be requested, respectively. Hence, in Fig. 7 the maximum
execution times are related to words with lengths of one or two. The maximum costs of other
words with different lengths are closed to each other. As shown in the line charts, the cost of
searches on Server2 is the same.

6.3 Overall Performance
In this section, considering all the execution times obtained from each method, we compare
the performance of ZSDB and FQE with plain (non-cryptographic) mode. To calculate
performance, we first consider the performance of the plain mode as 1 and the performance of
each method as relative to the amount of execution overhead they have. We first execute a
read-only workload (Δ=0.0) to measure decryption performance of each method. Next, we
evaluate both medium read-write (Δ=0.5) and write-only (Δ=1) workloads to measure hybrid
and encrytion performance of each method. Fig. 8 shows the performance of the methods at
different stages.

 Fig. 8. Performance of the Methods at Different Stages

As Fig. 8 displays, by increasing write workload, performance of both ZSDB and FQE

methods decreases due to the high overhead of encryption, but the ZSDB method has a less
decreased performance than FQE. Finally, considering all the execution modes, the
performance comparison of the methods is given in Fig. 9. Our results show that Overall
ZSDB has been able to improve performance, but of course, more improvements are needed to
achieve desired performance.

0

0.2

0.4

0.6

0.8

1

1.2

ZSDB FQE Plain

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4211

 Fig. 9. Overall Performance of the Methods

7. Conclusion
In this paper, a secure query processing method was proposed for a variety of data types. We
attempt to consider the security and performance aspects simultaneously.
Despite the other methods, we used secret sharing to support various operations on different
data types and avoid the overhaul of homomorphic methods. In the proposed method, we were
able to respond to complex query requests by upgrading the SDB method. User’s requests can
consist of all types of operators, including computational, comparisons and LIKE operators. In
this work, we search string data using an additional server (Dictionary server). In this way, we
were able to answer a variety of string matching (%Str%, Str%, %Str). In the proposed method,
most processes and storage are performed on the servers, and the data owner is only
responsible for data encryption, query translation and decrypting the results.

References
[1] J. Tang, Y. Cui, Q. Li, K. Ren, J. Liu and R. Buyya, “Ensuring security and privacy preservation

for cloud data services,” ACM Computing Surveys (CSUR), vol. 49, no. 1, pp. 13, 2016.
Article (CrossRef Link).

[2] F. A. Aljumah, Protocols for Secure Computation on Privately Encrypted Data in the Cloud,
Doctoral dissertation, Concordia University, Canada, 2017. Article (CrossRef Link).

[3] C. Sahin and A. El Abbadi, “Data security and privacy for outsourced data in the cloud,” in Proc.
of IEEE 34th International Conference on Data Engineering (ICDE), pp. 1731-1734, 2018.
Article (CrossRef Link).

[4] L. Bouganim and Y. Guo, Database encryption. Encyclopedia of Cryptography and, 2nd Edition,
Springer US, pp. 307-312, 2011. Article (CrossRef Link).

[5] P. Singh and K. Kaur, “Database security using encryption,” in Proc. of IEEE International
Conference on Futuristic Trends on Computational Analysis and Knowledge Management
(ABLAZE), pp. 353-358, February, 2015. Article (CrossRef Link).

[6] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of the forty-first annual
ACM symposium on Theory of computing, pp. 169-178, May, 2009. Article (CrossRef Link).

[7] R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120-126, 1978.
Article (CrossRef Link).

[8] A. C. Yao, “Protocols for secure computations,” in Proc. of 23rd annual symposium on
foundations of computer science, pp. 160-164, November, 1982. Article (CrossRef Link).

1

0.31
0.23

PLAIN ZSDB FQE

https://doi.org/10.1145/2906153
https://spectrum.library.concordia.ca/982511/7/Feras_PhD_F2017.pdf
https://doi.org/10.1109/ICDE.2018.00225
https://doi.org/10.1007/978-1-4419-5906-5_677
https://doi.org/10.1109/ABLAZE.2015.7155019
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/SFCS.1982.38

4212 Azizi et al.: Searchable Encrypted String for Query Support on Different Encrypted Data Types

[9] W. K. Wong, B. Kao, D. W. L. Cheung, R. Li and S. M. Yiu, “Secure query processing with data
interoperability in a cloud database environment,” in Proc. of the 2014 ACM SIGMOD
international conference on Management of data, pp. 1395-1406, June, 2014.
Article (CrossRef Link).

[10] H. Hacigümüş, B. Iyer, C. Li and S. Mehrotra, “Executing SQL over encrypted data in the
database-service-provider model,” in Proc. of the 2002 ACM SIGMOD international conference
on Management of data, pp. 216-227, June, 2002. Article (CrossRef Link).

[11] E. Mykletun and G. Tsudik, “Aggregation queries in the database-as-a-service model,” in Proc. of
the annual conference on data and applications security and privacy, pp. 89-103, July, 2006.
Article (CrossRef Link).

[12] R. A. Popa, C. Redfield, N. Zeldovich and H. Balakrishnan, “CryptDB: protecting confidentiality
with encrypted query processing,” in Proc. of the Twenty-Third ACM Symposium on Operating
Systems Principles, pp. 85-100, October, 2011. Article (CrossRef Link).

[13] S. Tu, M. Kaashoek, S. Madden and N. Zeldovich, “Processing analytical queries over encrypted
data,” in Proc. of the VLDB Endowment, pp. 289-300, March, 2013. Article (CrossRef Link).

[14] Z. He, W. K. Wong, B. Kao, D. W. L. Cheung, R. Li, S. M. Yiu and E. Lo, “SDB: a secure query
processing system with data interoperability,” in Proc. of the VLDB Endowment, vol. 8, no. 12, pp.
1876-1879, 2015. Article (CrossRef Link).

[15] K. G. Ho, L. Vu, N. H. Nguyen and H. M. Nguyen, “Speed up querying encrypted data on
outsourced database,” in Proc. of the 2017 International Conference on Machine Learning and
Soft Computing, pp. 47-52, 2017. Article (CrossRef Link).

[16] P. G. Alves and D. F. Aranha, “A framework for searching encrypted databases,” Journal of
Internet Services and Applications, vol. 9, no. 1, pp. 1, 2018. Article (CrossRef Link) .

[17] S. S. Moghadam, J. Darmont and G. Gavin, “Enforcing privacy in cloud databases,” in Proc. of the
International Conference on Big Data Analytics and Knowledge Discovery, pp. 53-73, August,
2017. Article (CrossRef Link) .

[18] T. K. Saha, M. Rathee and T. Koshiba, “Efficient private database queries using ring-LWE
somewhat homomorphic encryption,” Journal of Information Security and Applications, vol. 49,
no. 1, 2019. Article (CrossRef Link).

[19] R. Pontes, M. Pinto, M. Barbosa, R. Vilaça, M. Matos and R. Oliveira, “Performance trade-offs on
a secure multi-party relational database,” in Proc. of the Symposium on Applied Computing, pp.
456-461, April 2017. Article (CrossRef Link).

[20] Y. Zhou and L. M. Wang, “Sds2: Secure data-sharing scheme for crowd owners in public cloud
service,” in Proc. of the IEEE Second International Conference on Data Science in Cyberspace
(DSC), pp. 22-29, June, 2017. Article (CrossRef Link).

[21] M. He, J. Zhang, G. Zeng and S. M. Yiu, “A Privacy-Preserving Multi-Pattern Matching Scheme
for Searching Strings in Cloud Database,” in Proc. of the 15th Annual Conference on Privacy,
Security and Trust (PST), pp. 293-299, August 2017. Article (CrossRef Link).

[22] B. Wang, S. Yu, W. Lou and Y. T. Hou, “Privacy-preserving multi-keyword fuzzy search over
encrypted data in the cloud,” in Proc. of the IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, pp. 2112-2120, April 2014. Article (CrossRef Link).

[23] D. Wang, X. Jia, C. Wang, K. Yang, S. Fu and M. Xu, “Generalized pattern matching string search
on encrypted data in cloud systems,” in Proc. of the IEEE Conference on Computer
Communications (INFOCOM), pp. 2101-2109, April, 2015. Article (CrossRef Link).

[24] Z. Liu, J. Li, C. Jia, J. Yang and K. Yuan, “SQL-based fuzzy query mechanism over encrypted
database,” International Journal of Data Warehousing and Mining (IJDWM), vol. 10, no. 4, pp.
71-87, 2014. Article (CrossRef Link).

[25] Z. Wu, G. Xu, C. Lu, E. Chen, F. Jiang and G. Li, “An effective approach for the protection of
privacy text data in the CloudDB,” World Wide Web, vol. 21, no. 4, pp. 915-938, 2018.
Article (CrossRef Link).

[26] V. Attasena, N. Harbi and J. Darmont, “A novel multi-secret sharing approach for secure data
warehousing and on-line analysis processing in the cloud,” International Journal of Data
Warehousing and Mining (IJDWM), vol. 11, no. 2, pp. 22-43, 2015. Article (CrossRef Link).

https://doi.org/10.1145/2588555.2588572
https://doi.org/10.1145/564691.564717
https://doi.org/10.1007/11805588_7
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.14778/2535573.2488336
https://doi.org/10.14778/2824032.2824090
https://doi.org/10.1145/3036290.3036299
https://doi.org/10.1186/s13174-017-0073-0
https://doi.org/10.1007/978-3-319-64283-3_5
https://doi.org/10.1016/j.jisa.2019.102406
https://doi.org/10.1145/3019612.3019659
https://doi.org/10.1109/DSC.2017.25
https://doi.org/10.1109/PST.2017.00042
https://doi.org/10.1109/INFOCOM.2014.6848153
https://doi.org/10.1109/INFOCOM.2015.7218595
https://doi.org/10.4018/ijdwm.2014100104
https://doi.org/10.1007/s11280-017-0491-8
https://doi.org/10.4018/ijdwm.2015040102

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4213

[27] W. Tang, B. Qin, Y. Li and Q. Wu, “Functional Privacy-preserving Outsourcing Scheme with
Computation Verifiability in Fog Computing,” KSII Transactions on Internet & Information
Systems, vol. 14, no. 1, pp. 281-298, 2020. Article (CrossRef Link).

[28] S. Papadopoulos, A. Kiayias and D. Papadias, “Secure and efficient in-network processing of exact
SUM queries,” in Proc. of the 27th International Conference on Data Engineering, pp. 517-528,
April, 2011. Article (CrossRef Link).

[29] S. Fatima and S. Ahmad, “An Exhaustive Review on Security Issues in Cloud Computing,” KSII
Transactions on Internet & Information Systems, vol. 13, no. 6, pp. 3219-3237, 2019.
Article (CrossRef Link).

[30] J. Hua, Y. Liu, H. Chen, X. Tian and C. Jin, “An enhanced wildcard-based fuzzy searching scheme
in encrypted databases,” World Wide Web, vol. 23, pp. 2185-2214, 2020.
Article (CrossRef Link).

Shahrzad Azizi received her MSC Software Engineering from the University of Zanjan.
Her research is focused on testing NoSQL database security, testing database attacks,
providing security solutions and investigating innovations in information extraction in
Natural Language Processing (NLP).

Davud Mohamadpur received his Ph.D. from the Malek Ashtar University of Technology
and is currently an Assistant Professor in the University of Zanjan. His research is focused on
improvement of NoSQL, NewSQL databases and Big Data processing frameworks.

https://doi.org/10.3837/tiis.2020.01.016
https://doi.org/10.1109/ICDE.2011.5767886
https://doi.org/10.3837/tiis.2019.06.025
https://doi.org/10.1007/s11280-019-00774-x

