• Title/Summary/Keyword: Search algorithms

Search Result 1,328, Processing Time 0.028 seconds

Genetic Algorithms for neural network control systems

  • Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.737-741
    • /
    • 1994
  • We show an application of a genetic algorithm to, control systems including neural networks. Genetic algorithms are getting more popular nowadays because of their simplicity and robustness. Genetic algorithms are global search techniques for optimization and many other problems. A feed-forward neural network which is widely used in control applications usually learns by error back propagation algorithm(EBP). But, when there exist certain constraints, EBP can not be applied. We apply a modified genetic algorithm to such a case. We show simulation examples of two cart-pole nonlinear systems: single pole and double pole.

  • PDF

A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms (적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계)

  • Won, Taep-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

Structural Damage Detection Using Swarm Intelligence and Model Updating Technique (군집지능과 모델개선기법을 이용한 구조물의 결함탐지)

  • Choi, Jong-Hun;Koh, Bong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.

Stabilization and Tracking Algorithms of a Shipboard Satellite Antenna System (선박용 위성 안테나 시스템의 안정화 및 추적 알고리즘)

  • Koh, Woon-Yong;Hwang, Seung-Wook;Ha, Yun-Su;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents the development of development of stabilization and tracking algorithms for a shipboard satellite antenna system. In order to stabilize the satellite antenna system designed in the previous work, a model for each control axis is derived and its parameters are estimated using a genetic algorithm, and the state feedback controller is designed based on the linearized model. Then a tracking algorithm is derived to overcome some drawbacks of the step tracking. The proposed algorithm searches for the best position using gradient-based formulae and signal intensities measured according to a search pattern. The effectiveness of both the stabilization and tracking algorithms is demonstrated through experiment using real-world data.

On Sweeping Operators for Reducing Premature Convergence of Genetic Algorithms (유전 알고리즘의 조기수렴 저감을 위한 연산자 소인방법 연구)

  • Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1210-1218
    • /
    • 2011
  • GA (Genetic Algorithms) are efficient for searching for global optima but may have some problems such as premature convergence, convergence to local extremum and divergence. These phenomena are related to the evolutionary operators. As population diversity converges to low value, the search ability of a GA decreases and premature convergence or converging to local extremum may occur but population diversity converges to high value, then genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we analyze the effects of the selection operator, crossover operator, and mutation operator on convergence properties, and propose the sweeping method of mutation probability and elitist propagation rate to maintain the diversity of the GA's population for getting out of the premature convergence. Results of simulation studies verify the feasibility of using these sweeping operators to avoid premature convergence and convergence to local extrema.

Design of Auto-Tuning Fuzzy Logic Controllers Using Hybrid Genetic Algorithms (하이브리드 유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 설계)

  • Ryoo, Dong-Wan;Kwon, Jae-Cheol;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.126-129
    • /
    • 1997
  • This paper propose a new hybrid genetic algorithm for auto-tunig auzzy controller improving the performance. In general, fuzzy controller used pre-determine d moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controller, using hybrid genetic algorithms. The object of the proposed algorithm is to promote search efficiency by overcoming a premature convergence of genetic algorithms. Hybrid genetic algorithm is based on genetic algorithm and modified gradient method. Simulation results verify the validity of the presented method.

  • PDF

A Fast Algorithm for the k-Keyword Ordered Proximity Problem (순서를 고려하는 k-키워드 근접도 문제를 위한 빠른 알고리즘)

  • Kim, Jin-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.281-288
    • /
    • 2010
  • In the web search engines, the proximity is used to compute the relevance of a document to the given query. There exist various research results about the proximity problems and the ordered proximity problems. In this paper, we present O(n) time algorithms for the k-keyword ordered proximity problems where n is the total number of occurrences of the k keywords in a document. Experimental results show that the proposed algorithms are about 1.2 times and over 3 times faster than the previous results when k=2 and k=5, respectively.

A Study on Multiobjective Genetic Optimization Using Co-Evolutionary Strategy (공진화전략에 의한 다중목적 유전알고리즘 최적화기법에 관한 연구)

  • Kim, Do-Young;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.699-704
    • /
    • 2000
  • The present paper deals with a multiobjective optimization method based on the co-evolutionary genetic strategy. The co-evolutionary strategy carries out the multiobjective optimization in such way that it optimizes individual objective function as compared with each generation's value while there are more than two genetic evolutions at the same time. In this study, the designs that are out of the given constraint map compared with other objective function value are excepted by the penalty. The proposed multiobjective genetic algorithms are distinguished from other optimization methods because it seeks for the optimized value through the simultaneous search without the help of the single-objective values which have to be obtained in advance of the multiobjective designs. The proposed strategy easily applied to well-developed genetic algorithms since it doesn't need any further formulation for the multiobjective optimization. The paper describes the co-evolutionary strategy and compares design results on the simple structural optimization problem.

  • PDF

Hybrid Genetic Algorithm for Optimizing Structural Design Problems (구조적 설계문제 최적화를 위한 혼합유전알고리즘)

  • 윤영수;이상용
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.1-15
    • /
    • 1998
  • Genetic algorithms(GAs) are suited for solving structural design problems, since they handle the design variables efficiently. This ability of GAs considers then as a good choice for optimization problems. Nevertheless, there are many situations that the conventional genetic algorithms do not perform particularly well, and so various methods of hybridization have been proposed. Thus. this paper develops a hybrid genetic algorithm(HGA) to incorporate a local convergence method and precision search method around optimum in the genetic algorithms. In case study. it is showed that HGA is able consistently to provide efficient, fine quality solutions and provide a significant capability for solving structural design problems.

  • PDF