• Title/Summary/Keyword: Search Key

Search Result 892, Processing Time 0.036 seconds

Privacy-Preserving Key-Updatable Public Key Encryption with Keyword Search Supporting Ciphertext Sharing Function

  • Wang, Fen;Lu, Yang;Wang, Zhongqi;Tian, Jinmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.266-286
    • /
    • 2022
  • Public key encryption with keyword search (PEKS) allows a user to make search on ciphertexts without disclosing the information of encrypted messages and keywords. In practice, cryptographic operations often occur on insecure devices or mobile devices. But, these devices face the risk of being lost or stolen. Therefore, the secret keys stored on these devices are likely to be exposed. To handle the key exposure problem in PEKS, the notion of key-updatable PEKS (KU-PEKS) was proposed recently. In KU-PEKS, the users' keys can be updated as the system runs. Nevertheless, the existing KU-PEKS framework has some weaknesses. Firstly, it can't update the keyword ciphertexts on the storage server without leaking keyword information. Secondly, it needs to send the search tokens to the storage server by secure channels. Thirdly, it does not consider the search token security. In this work, a new PEKS framework named key-updatable and ciphertext-sharable PEKS (KU-CS-PEKS) is devised. This novel framework effectively overcomes the weaknesses in KU-PEKS and has the ciphertext sharing function which is not supported by KU-PEKS. The security notions for KU-CS-PEKS are formally defined and then a concrete KU-CS-PEKS scheme is proposed. The security proofs demonstrate that the KU-CS-PEKS scheme guarantees both the keyword ciphertext privacy and the search token privacy. The experimental results and comparisons bear out that the proposed scheme is practicable.

Selecting a key issue through association analysis of realtime search words (실시간 검색어 연관 분석을 통한 핵심 이슈 선정)

  • Chong, Min-Yeong
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.161-169
    • /
    • 2015
  • Realtime search words of typical portal sites appear every few seconds in descending order by search frequency in order to show issues increasing rapidly in interest. However, the characteristics of realtime search words reordering within too short a time cause problems that they go over the key issues of the day. This paper proposes a method for deriving a key issue through association analysis of realtime search words. The proposed method first makes scores of realtime search words depending on the ranking and the relative interest, and derives the top 10 search words through descriptive statistics for groups. Then, it extracts association rules depending on 'support' and 'confidence', and chooses the key issue based on the results as a graph visualizing them. The results of experiments show that the key issue through association rules is more meaningful than the first realtime search word.

Public Key Encryption with Keyword Search for Restricted Testability (검증 능력이 제한된 검색 가능한 공개키 암호시스템)

  • Eom, Ji-Eun;Rhee, Hyun-Sook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.3-10
    • /
    • 2011
  • To provide efficient keyword search on encrypted data, a public key encryption with keyword search (PEKS) was proposed by Boneh et al. A sender encrypts an e-mail and keywords with receiver's public key, respectively and uploads them on a server. Then a receiver generates a trapdoor of w with his secret key to search an e-mail related with some keyword w. However, Byun et al. showed that PEKS and some related schemes are not secure against keyword guessing attacks. In this paper, we propose a public key encryption with keyword search for restricted testability (PEKS-RT) scheme and show that our scheme is secure against keyword guessing attacks.

A Design of Expandable IC Card Operating System (확정성 있는 IC 카드 운영체제의 설계)

  • 박철한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.2
    • /
    • pp.49-60
    • /
    • 1999
  • IC 카드의 하드웨어적인 제약으로 대부분의 IC 카드는 대칭키 알고리즘을 사용하고 있지만 IC 카드 하드웨어 제조 기술의 발전으로 앞으로는 보안성이 우수한 비대 칭키 알고리즘이 많이 사용될 것이다. 그리고 IC 카드의 가장 큰 제약적 중 하나는 메모리 용량의 한계이다. 따라서 보안상 안전하면서도 메모리를 적게 사용하는 IC 카드 운영체제의 구현을 중요한 문제이다. 그래서 본 논문에서는 다양한 종류의 키 알고리즘을 수용할 수 있는 키 파일 탐색 기법을 제안하였다. 또한 데이터 파일 헤더에 잠금 필드를 삽입하여 보안성을 향상시켰으며 메모리 사용량을 줄일 수 있도록 데이터 파일 헤더만을 이용한 파일 탐색 기법과 자유 공간 탐색 기법을 제안하였다. Because of the evolution of IC card hardware fabrication technologies IC card will be able to accept asymmetric key encryption algorithm in the future. One of the most restrictive points of IC card is memory capacity. Therefore it is an important problem to design a secure IC card operating system using memory in small. In this paper we proposed a key file search mechanism using a key length field inserted in a key file header structure. The key file search mechanism makes IC card execute any key-based encryption algorithm. In addition we proposed inserting a lock field in data file header structure. The lock field intensifies the security of a data file. Finally we proposed a data file search mechanism and free space search mechanism using only data file header. The file system using these mechanisms spends smaller memory than that using a file description table and record of unallocated space.

A study on the efficient patent search process using big data analysis tool R (빅데이터 분석 도구 R을 활용한 효율적인 특허 검색에 관한 연구)

  • Zhang, Jing-Lun;Jang, Jung-Hwan;Kim, Suk-Ju;Lee, Hyun-Keun;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.289-294
    • /
    • 2013
  • Due to sudden transition to intellectual society corresponding with fast technology progress, companies and nations need to focus on development and guarantee of intellectual property. The possession of intellectual property has been the important factor of competition power. In this paper we developed the efficient patent search process with big data analysis tool R. This patent search process consists of 5 steps. We result that at first this process obtain the core patent search key words and search the target patents through search formula using the combination of above patent search key words.

A Multi-Indexes Based Technique for Resolving Collision in a Hash Table

  • Yusuf, Ahmed Dalhatu;Abdullahi, Saleh;Boukar, Moussa Mahamat;Yusuf, Salisu Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.339-345
    • /
    • 2021
  • The rapid development of various applications in networking system, business, medical, education, and other domains that use basic data access operations such as insert, edit, delete and search makes data structure venerable and crucial in providing an efficient method for day to day operations of those numerous applications. One of the major problems of those applications is achieving constant time to search a key from a collection. A number of different methods which attempt to achieve that have been discovered by researchers over the years with different performance behaviors. This work evaluated these methods, and found out that almost all the existing methods have non-constant time for adding and searching a key. In this work, we designed a multi-indexes hashing algorithm that handles a collision in a hash table T efficiently and achieved constant time O(1) for searching and adding a key. Our method employed two-level of hashing which uses pattern extraction h1(key) and h2(key). The second hash function h2(key) is use for handling collision in T. Here, we eliminated the wasted slots in the search space T which is another problem associated with the existing methods.

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu;Han Zhang;Yingjie Wu;Baokun Liu;Jiong Guo;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.310-323
    • /
    • 2023
  • The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

Block Interpolation Search (블록 보간 탐색법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.157-163
    • /
    • 2017
  • The binary and interpolation search algorithms are the most famous among search area algorithms, the former running in $O(log_2n)$ on average, and the latter in $O(log_2log_2n)$ on average and O(n) at worst. Also, the interpolation search use only the probability of key value location without priori information. This paper proposes another search algorithm, which I term a 'hybrid block and interpolation search'. This algorithm employs the block search, a method by which MSB index of a data is determined as a block, and the interpolation search to find the exact location of the key. The proposed algorithm reduces the search range with priori information and search the reduced range with uninformed situation. Experimental results show that the algorithm has a time complexity of $O(log_2log_2n_i)$, $n_i{\simeq}0.1n$ both on average and at worst through utilization of previously acquired information on the block search. The proposed algorithm has proved to be approximately 10 times faster than the interpolation search on average.

Memory-efficient Public Key Encryption with Keyword Search in Server (서버에서 효율적인 메모리 사용량을 제공하는 공개키 기반 검색 암호 시스템)

  • Kwon, Eun-Jeong;Seo, Jae-Woo;Lee, Pil-Joong;Park, Young-Man;Lee, Hae-Gyu;Kim, Yeong-Heon;Chong, Hak-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.3-15
    • /
    • 2008
  • In 2000, Song. et. al. firstly proposed the Searchable Keyword Encryption System that treated a problem to search keywords on encrypted data. Since then, various Searchable Keyword Encryption Systems based on symmetric and asymmetric methods have been proposed. However, the Searchable Keyword Encryption Systems based on public key system has a problem that the index size for searching keywords on encrypted data increases linearly according to the number of keyword. In this paper, we propose the method that reduces the index size of Searchable Keyword Encryption based on public key system using Bloom Filter, apply the proposed method to PEKS(Public key Encryption with Keyword Search) that was proposed by Boneh. et. al., and analyze efficiency for the aspect of storage.

Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

  • Jho, Nam-Su;Hong, Dowon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1328-1342
    • /
    • 2013
  • Searchable encryption is a cryptographic protocol for searching a document in encrypted databases. A simple searchable encryption protocol, which is capable of using only one keyword at one time, is very limited and cannot satisfy demands of various applications. Thus, designing a searchable encryption with useful additional functions, for example, conjunctive keyword search, is one of the most important goals. There have been many attempts to construct a searchable encryption with conjunctive keyword search. However, most of the previously proposed protocols are based on public-key cryptosystems which require a large amount of computational cost. Moreover, the amount of computation in search procedure depends on the number of documents stored in the database. These previously proposed protocols are not suitable for extremely large data sets. In this paper, we propose a new searchable encryption protocol with a conjunctive keyword search based on a linked tree structure instead of public-key based techniques. The protocol requires a remarkably small computational cost, particularly when applied to extremely large databases. Actually, the amount of computation in search procedure depends on the number of documents matched to the query, instead of the size of the entire database.