
1328 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

This research was supported by Next-Generation Information Computing Development Program through

the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and

Technology (Grant No. 2011-0029925). This work was also supported by the K-SCARF project, the ICT

R&D program of ETRI(Research on Key Leakage Analysis and Response Technologies).

http://dx.doi.org/10.3837/tiis.2013.05.022

Symmetric Searchable Encryption with
Efficient Conjunctive Keyword Search

Nam-Su Jho

1
, and Dowon Hong

2

1 Electronics and Telecommunications Research Institute

138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea

[e-mail: nsjho@etri.re.kr]
2 Department of Applied Mathematics, Kongju National University

56 Gongjudaehak-ro, Gongju-si, Chungcheongnam-do, 314-701, Korea

[e-mail: dwhong@kongju.ac.kr]

*Corresponding author: Dowon Hong

Received December 11, 2012; revised March 7, 2013; revised April 16, 2013; accepted May 6, 2013;

published May 31, 2013

Abstract

Searchable encryption is a cryptographic protocol for searching a document in encrypted

databases. A simple searchable encryption protocol, which is capable of using only one

keyword at one time, is very limited and cannot satisfy demands of various applications. Thus,

designing a searchable encryption with useful additional functions, for example, conjunctive

keyword search, is one of the most important goals. There have been many attempts to

construct a searchable encryption with conjunctive keyword search. However, most of the

previously proposed protocols are based on public-key cryptosystems which require a large

amount of computational cost. Moreover, the amount of computation in search procedure

depends on the number of documents stored in the database. These previously proposed

protocols are not suitable for extremely large data sets.

In this paper, we propose a new searchable encryption protocol with a conjunctive keyword

search based on a linked tree structure instead of public-key based techniques. The protocol

requires a remarkably small computational cost, particularly when applied to extremely large

databases. Actually, the amount of computation in search procedure depends on the number of

documents matched to the query, instead of the size of the entire database.

Keywords: Searchable encryption, database encryption, data privacy, conjunctive keyword

search

mailto:t.m.chen@swansea.ac.uk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013 1329

Copyright ⓒ 2013 KSII

1. Introduction

As the amount of data is greatly increasing, methods for storing and managing data

efficiently are attracting more interest and many solutions have been developed. The use of a

remote database service is the most common and convenient method to manage huge data sets.

However, storing sensitive data in a remote database in which the database manager is

different from the data owner can cause many side effects. In particular, a privacy breach of

the stored data is the most important issue. Remote database service providers have adopted

various means such as user authentication or access control to maintain the privacy of the

stored data. However, these are not fundamental solutions, as a database service provider can

easily access the stored data. Another way to maintain the privacy of the stored data is to apply

an encryption system. Well developed and designed encryption systems guarantee the secrecy

of encrypted data theoretically. Adopting encryption system creates another problem, that is,

encryption systems conceal too much information, thereby preventing useful database

operations such as searching or sorting. Searchable encryption is proposed for solving this

problem, allowing an efficient search of encrypted documents and maintaining the secrecy like

encryption systems.

A method to search data while maintaining privacy was first researched by Ostrovsky and

Goldreigh [1], [2]. The result of their work, oblivious RAMs, has different characteristics from

searchable encryption systems. However, oblivious RAMs became the basis of searchable

encryption systems in later research. In 2000, Song et al. introduced a formal definition of the

searchable encryption and proposed several solutions [3]. Through many researches such as

[4]-[6] the basic structure of searchable encryption was developed and formalized so that

additional information, called an index, is stored in the server along with encrypted documents.

Goh also introduced notions of security for searchable encryption focusing on an index:

non-adaptive indistinguishability security against a chosen keyword attack (IND-CKA) and

adaptive indistinguishability security against a chosen keyword attack (IND2-CKA) [4]. In

2006, Curtmola et al. revised the IND2-CKA security along with the first searchable

encryption using a linked chain structure in which the searching time is independent of the

number of total encrypted documents [7]. This formal structure and these security notions

have been widely adopted in recent studies. There have also been attempts at constructing

searchable encryption that supports public-key encryption, i.e., anyone can provide encrypted

documents and indexes using a public-key, where searching and decryption is only available

for the owner of a secret key [8], [9].

Basic searchable encryption provides a search method that finds documents corresponding

to a single keyword. However, this basic search method is very limited and cannot satisfy the

various demands that naturally arise. Therefore, designing a searchable encryption with

additional search functions is one of the most important goals. Additional search functions that

are frequently remarked upon include conjunctive keyword search, range query, ordering, and

size comparison. In this paper, we concentrate on the conjunctive keyword search problem.

In conjunctive keyword search a query consists of multiple keywords for search, and a

search procedure results list of documents which are matched to all of the keywords without

revealing any other information. A conjunctive keyword search is frequently used for

searching documents in everyday life. By using a basic keyword search algorithm repetitively,

one can obtain similar results for conjunctive keyword search, i.e. the list of documents that

contain all keywords, for a queried keywords {w1, w2, …, wδ}. However, this method is

1330 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

inefficient, and the secrecy of searched data is also breached. If a server performs a basic

search method for each single keyword in {w1, w2, …, wδ}, then the server obtains D(w1),

D(w2), …, D(wδ) separately, where D(wi) means the set of documents including the keyword wi,

and obtains the final result by computing D(w1) ∩ D(w2) ∩ … ∩ D(wδ). In this process, the

server has to perform δ independent processes separately, which is very inefficient. Moreover,

the server can obtain information for intermediate results, D(w1), D(w2), …, D(wδ).

Searchable encryption providing a conjunctive keyword search has been mainly constructed

using techniques based on public-key cryptosystems, especially a bilinear map over elliptic

curves [10]-[13]. In addition, the amount of computation which is required in the search

procedure is proportional to the number of stored documents. This means that millions of

public-key based decryptions or bilinear map computations can be required for just one query.

Therefore, we focus on constructing a searchable encryption system with conjunctive keyword

search using symmetric encryption system only. Our protocol provides remarkably efficient

search algorithm.

2. Preliminaries

2.1 Searchable Symmetric Encryption Using a Linked Chain

In 2006, Curtmola et al. proposed a searchable symmetric encryption (SSE) using a linked

chain structure along with security definitions for SSE [7]. We present brief introduction of the

protocol proposed by Curtmola. The protocol consists of four algorithms, KeyGeneration,

BuildIndex, Trapdoor, and Search.

KeyGeneration

1. The user prepares a symmetric encryption system, E, which is proven to be secure.

From now on, Ek(m) represents a cipher-text of a message m using a secret key k.

2. The user also selects two cryptographically secure one-way (pseudorandom) functions,

f and h, which are kept secret.

BuildIndex (D, E, k, f, h)

1. Initialization

A. Scan D, the set of all documents, to build Δ′, the set of distinct keywords in D.

B. For each keyword w ∈ Δ′, build D(w), the set of documents that contains the

keyword w.

2. Build array A

A. For each wi∈Δ′, build a linked list, Li

i. compute vi,0 = f(wi) and ki,0 = h(wi)

ii. for 1 ≤ j ≤ |D(wi)|

1. randomly generate vi,j and ki,j

2. set a node Ni,j = 〈 id(Di,j) || vi,j || ki,j 〉, where id(Di,j) is the identifier of the

j-th document in D(wi)

3. compute)(ji,k NE
1ji, 

, and store it in A[vi,j-1]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013 1331

Copyright ⓒ 2013 KSII

iii. for the last node of Li (i.e.,
|)(iw|i,N D), before encryption, set the address of the

next node to ‘empty’

B. set the remaining entries of A to random values of the same size as the existing

entries of A

3. Output the index A

Trapdoor(w) : Output Tw = (h(w), f(w))

Search(A, Tw = (h(w), f(w))

1. Decrypt the linked list L starting with the node at address vw encrypted under key kw

2. Output the list of document identifiers contained in L

Fig. 1. Linked chain structure

3.2 Security Definition

We also present the security notions proposed by Curtmola [7].

A history is an interaction between a user and a server. If we assume that a user makes q

queries, then the history, H
(q)

, can be uniquely determined by the collection of documents,

which is stored at the server, and q queries. Thus, we can define a history as H
(q)

 = (D , w1, …,

wq), where D is a collection of all documents, and each wi is a queried keyword.

Intuitively, the history is what the user wants to hide from the server. However, the server

knows identifiers of documents, encrypted documents, and the index. During interaction, the

server obtains more information such as trapdoors, the number of documents matched with the

given trapdoors. A set of this information, i.e., what an adversary actually gets to “see”, is

called a view of the given history. Formally, we can define a view of history H
(q)

, as V(H
(q)

) =

(id(D1), …, id(DN), E(D1), …, E(DN), ID, T1, …, Tq), where E(D) indicates a ciphertext of D, ID

is an index, and Ti is a trapdoor.

A trace means the information about a history, which is leaked. The outcome of each

search procedure, a collection of identifiers of documents that contain each queried keywords,

1332 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

is leaked to the server. The pattern of searches, the information of correspondence between

two trapdoors, is also revealed to the server. Moreover, since the encrypted documents are

stored on the server, we can assume that the information about these encrypted documents and

their identifiers are also leaked. Formally, the trace, Tr(H
(q)

), can be defined as Tr(H
(q)

) =

(id(D1), …, id(DN), |D1|, …, |DN|, D(w1), …, D(wq), Π
(q)

), where Π
(q)

 indicates the user's search

pattern, Π
(q)

[i, j] = 1 if wi = wj; otherwise, Π
(q)

[i, j] = 0 for 1 ≤ i,j ≤ q. Substituting a single

keyword, wi, into a keyword set, si, we can adopt these definitions for a conjunctive keyword

search. The pattern of search Π
(q)

 is also changed to Π
(q)

[i, j] = 1 if si ⊆sj; otherwise, Π
(q)

[i, j] =

0 for qji, 1 .

Definition (Non-Adaptive Indistinguishability Security for SSE) An SSE scheme is secure

in the sense of non-adaptive indistinguishability if for all q, all (non-uniform) probabilistic

polynomial-time adversaries A = (A1, A2), all polynomials p, and all sufficiently large k,

,
kp

HVb'bHHbb' q

bR

qq

)(

1

2

1
state)]),(({0,1}; ;state),,(|Pr[)(

21

)(

1

)(

0  AA

where (H0
(q)

, H1
(q)

) are histories over q queries such that Tr(H0
(q)

) = Tr(H1
(q)

), the ‘state’ is a

polynomially bounded string that captures A1’s state, and the probability is taken over the

internal coins of A and the underlying BuildIndex algorithm.

The searchable encryption protocol presented in the previous section satisfies non-adaptive

indistinguishability security.

3. Construction

3.1 Basic Idea

Before describing the formal construction, we introduce the basic ideas utilized for

constructing conjunctive keyword search from the searchable encryption of Curtmola.

Among the keyword sets (i.e., conjunctive keyword queries), there are inclusion relations.

For example, if there are two keyword sets s1 and s2 satisfying s1⊆s2, then D(s1)⊇D(s2), where

D(si) indicates the set of documents corresponding to the keyword set si. In this case, D(s1) can

be considered the union of two sub-sets: one sub-set is D(s2), which is included in both results

for queries s1 and s2, and the other sub-set is the differential ‘D(s1) ­ D(s2)’, which is included

in the result for query s1 only. Therefore, all documents in D(s2) should be included in two

linked chains. Instead, we can construct two chains, one is for D(s2) and the other is for D(s1) ­
D(s2), and create a link between the chains (which we call an external link). For the query s1,

the searching procedure starts from the chain corresponding to D(s1) ­ D(s2), and continues

following the external link to the chain corresponding to D(s2). Thus, the search algorithm can

cover all documents of D(s1). Note that searching for query s2 is trivial. Similarly, we can deal

with the keyword sets with the relation s1⊂s2⊂s3⊂… by connecting the corresponding

linked chains sequentially.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013 1333

Copyright ⓒ 2013 KSII

Fig. 2. External link

However, a real conjunctive keyword search is more complicated. In real document sets,

incursion relations among keyword sets are not linear, but rather make up a kind of net. Thus,

each linked chain requires many external links. In linked chain structure, each linked chain has

only one empty end point, and it is too small to cover the required external links. To solve this

problem, we expanded the linked chain structure into a linked tree structure. The expansion is

easily accomplished by adding one additional link to each node.

Fig. 3. Expansion into a linked tree structure

Note that when each linked chain is rearranged into a linked tree structure, each linked tree

needs not be balanced. Instead, each node is added to the tree at a randomly chosen position.

Finally, we can easily manage any conjunctive keyword search connecting external links

between linked trees

3.2 Formal Description

Searchable symmetric encryption consists of four algorithms, key generation, build index,

trapdoor, and search. Without loss of generality, we assume that data set D consists of N

documents, and each document is an ordered tuple of ℓ keywords, Di = (wi,1, wi,2, …, wi,ℓ).

1334 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

Fig. 4. Conjunctive search using a linked tree structure

Key Generation

There are two security parameters, λ and μ, where λ represents the size of the secret key,

and μ is a constant determined from the size of the data set to be encrypted. The user prepares

a symmetric encryption system E which uses λ-bit encryption keys. The user also selects a

λ-bit secret key k and two one-way (pseudorandom) functions f :{0,1}
*
[1,μ] and h : [1,μ] 

{0,1}
λ
. k, f, and h are kept secret.

Build Index

Build index (D, E, k, f, h) outputs an array A which consists of μ elements. Each element of

A is the ciphertext of a tuple,

A[ind] = E(IDind || 〈 LDind ; LKind 〉 || 〈 RDind ; RKind 〉|| bind).

IDind is a document identifier. 〈 LDind ; LKind 〉 and 〈 RDind ; RKind 〉 are left and right links,

respectively. Thus, each element can perform the role of a parent node with two children. LDind

and RDind represent addresses in array A, LKind and RKind are λ-bit keys used in performing

encryption E. Finally, bind is one-bit information.

Build index (D, E, k, f, h)

1. Preparation

A. For each document Di ∈D

i. Build Δi, the set of all distinct keywords in Di

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013 1335

Copyright ⓒ 2013 KSII

ii. Define Pi   ααα i ,2 | :
Δ , i.e., Pi is the power set of Δi, or the set of all

conjunctive keywords in Di

B. Define P = ∪1≤i≤N Pi, so that P is the set of all possible (conjunctive) queries which

has at least one corresponding document in D

2. Build Index A

A. Initialization

i. Make an array A with μ elements.

ii. Each element of A is a tuple of following form

A[ind] = (IDind, 〈 LDind ; LKind 〉, 〈 RDind ; RKind 〉, bind).

iii. Initially, each IDind, LDind, and RDind are set to ‘EMPTY’ and bind is set to 0,

where EMPTY indicates a special pre-assigned character.

B. Marking a starting point for each si ∈P. Note that si is a set of keywords, i.e., si =

...} , ,{
21 ii w'w' . We can re-arrange si as an ordered tuple

is = (
,1iw ,

,2iw , …, ,iw),

where wi,j may represent a special keyword ‘NONE’.

i. Compute ind(
is) = f(wi,1 || wi,2 || … || wi,ℓ).

ii. Find the node A[ind(i)] and set bind(i) to be 1.

C. Separate D into disjoint subsets

i. Define)(isD be)()(
,

j
sss

i ss
jji

DD
P

- , i.e. the set of all documents those are

exactly related to si.

ii. So that D = ∪)(isD , and )()(ji ss DD ø for any i ≠ j.

D. Storing documents (for each si ∈P)

i. Choose |)(isD |-1 empty nodes (the node satisfying the condition of bind = 0)

in A randomly.

ii. Construct a linked tree over |)(isD | nodes. Note that the root node should be

the starting point, A[ind(
is)], selected at the step (B). And the other |)(isD |-1

nodes selected at the previous step are randomly arranged.

- Constructing tree structure is simply storing address of child node at

LDind or RDind of the parent node.

- If A[ind1] and A[ind2] are two children of A[ind3], then the value of ind1

and ind2 are stored at
3indLD and

3indRD , respectively. And
3indKL and

3indKR are filled with λ-bit encryption keys, h(ind1) and h(ind2).

- If A[ind3] has only one child node, then one of
33

; indind LKLD and

33 indind RKRD ; is remained EMPTY, i.e. empty link.

- If A[ind3] is a leaf node then it has two empty links.

iii. Store identifiers of documents in)(isD at nodes in the tree, Each node stores

one identifier.

iv. We denote the tree as T(si).

1336 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

E. Connecting linked trees (for each keyword set si∈P)

i. For each sj∈P satisfying the conditions, si⊂sj and |si| + 1 = |sj|, construct an

external link from T(si) to T(sj) as follows.

ii. Randomly select a node A[x] from T(si) which has at least one empty link, i.e.,

LDx = EMPTY or RDx = EMPTY (here, we assume that the left link is empty).

Then store ind(
js) and h(ind(

js)) in LDx and LKx, respectively.

iii. If there is no node with an empty link in T(si), then extend the linked tree as in

step (F).

F. Extending a linked tree

i. Randomly choose a node from T(si) and an empty node from A, say A[x] and

A[y], respectively.

ii. Move one link of A[x] to A[y], i.e., the values of LDx and LKx are stored at LDy

and LKy, respectively (here, we may select the right link instead).

iii. y, the address of A[y] is stored at LDx and h(y) is stored at LKx.

iv. IDy is filled with a dummy identifier that cannot be distinguished by anyone

except the data owner.

v. Insert A[y] into T(si), then T(si) has a node with an empty link for an external

link.

G. Fill remaining nodes

i. Fill remaining nodes of A, which are still empty, with a random bit string

while keeping the value of bind as 0.

ii. For every i, if IDi is empty then fill IDi with a random bit string.

H. Encryption

i. Encrypt each node A[i] using the encryption key h(i).

3. Output A

Trapdoor

To make a query about keywords w1, w2, …, wℓ conjunctively, the user computes the

following:

Trapdoor(w1, w2, …, wℓ) = 〈f(w1 || w2 || … || wℓ), h(f(w1 || w2 || … || wℓ)) 〉.

Here, wi may have a value ‘NONE’.

Search

The search process is simply collecting document identifiers in the linked tree starting from

the node corresponding to the given trapdoor.

Search(A, 〈v;k〉)

1. Initialization

A. Generate set of links L ={〈v;k〉}, and set of result R = ø.

2. Search

A. Randomly select a link 〈α;β〉 from L and remove it from L.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013 1337

Copyright ⓒ 2013 KSII

B. Decrypt the node A[a],

Dβ(A[α]) = (IDα, 〈LDα ; LKα〉, 〈RDα ; RKα〉, bα).

C. If
b = 0, then terminate the search process and return ‘EMPTY’.

D. Otherwise, two links 〈LDα ; LKα〉 and 〈RDα ; RKα〉 are inserted into L , and IDα

is inserted into R, respectively

E. Iterate the above procedures until L is empty.

3. Output R

4. Analysis

4.1 Correctness

For a keyword set
1s = {w1,1, w1,2, …, w1,ℓ}, let T(s1) be the linked tree previously defined. It is

clear that for any node in T(s1), there is a linked chain from the root node, A[f(w1,1 || w1,2 || … ||

w1,ℓ)]. Therefore, with a trapdoor, 〈 f(w1,1 || w1,2 || … || w1,ℓ), h(f(w1,1 || w1,2 || … || w1,ℓ)) 〉, the user

can receive all documents contained in T(s1). However, there are more documents

corresponding to the query, s1.

For any keyword set s2 satisfying s1⊂s2, there exists at least one increasing chain, s1 = s′1

⊂ s′2 ⊂ … ⊂ s′δ = s2, with |s′i| + 1 = |s′i+1|. This means that there is an external link from T(s′i)

to the starting point of T(s′i+1). Therefore, with the query s1, the result contains all documents

corresponding to all keyword sets, s′1, s′2, …, s′δ, i.e., all documents containing the keywords

set, s1.

Note that the user may generate a trapdoor for a keyword set corresponding to no document,

i.e., an empty query. Therefore, a method to distinguish a proper query from an empty one is

needed. Recall that each node has a check bit bind and the reply is made only if every check bit

of the decrypted nodes has the proper value.

We claim that the probability of a server making a wrong reply for an empty query is

negligible. The reason for this is easy to understand. Note that if a trapdoor, 〈v;k〉, is for an

empty query, then k is not a proper secret key for A[v]. The server can compute Dk(A[v])

properly, but the server obtains a random string after decryption. This means that the server

receives random links again. The process is terminated with a wrong result if all random links

have an EMPTY value and all check bits have a value of 1. The probability that one link has the

value of EMPTY is almost 1/μ. Recall that μ indicates the number of elements in A. The

probability that the server will terminate the process properly after searching m nodes is (1/2)
m

× 1/μ
m+1

. Finally, the probability that the server will generate a wrong reply is 






1

1)1/(2
m

mm μ .

For a large μ, this can be summarized as 1/(2μ
2
 - μ).

Up to this point, we have not considered a collision of f, an event in which f outputs the

same value for different inputs. A collision disturbs the construction of a linked tree structure.

The more that array A is filled, the more serious collision effect becomes. In the proposed

protocol, however, only the starting point of a linked tree is influenced by a collision. The

other elements are randomly chosen among empty elements instead of the output of f.

Compared to the size of A, the number of starting points is very small, and thus the starting

points are very sparsely positioned in A. Since there are many well-developed methods used to

1338 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

manage a sparse hash table efficiently, we can solve the collision problem easily (usually, at

the cost of slightly increased storage). In this paper, we omit the details of such a solution.

4.2 Efficiency

Size of array A: We claim that v(ℓ)·N nodes are sufficient to store all linked trees. Here,

we will provide a practical bound for v(ℓ).

Recall that v(ℓ) means the number of all possible conjunctive keywords consist of at most ℓ

keywords and the bound for v(ℓ) is v(ℓ) ≤ nC1 + nC2 + … + nCℓ, where n means the number of all

possible keywords. However, this bound is not reasonable when it is applied to the storage size.

Remind that in the BuildIndex algorithm only queries which correspond to at least one

document are stored, i.e. no empty query is stored. Since each document has at most ℓ

keywords, in the viewpoint of storage v(ℓ) is bounded as v(ℓ) ≤ ℓC1 + ℓC2 + … + ℓCℓ = 2
ℓ
 -1.

This is also theoretical bound for v(ℓ). In a typical case, many common keywords exist in a

database, and thus the actual number of nodes required greatly decreases. To measure the

storage size in a typical case, we select a real data set, 1990 US census data [14], and simulate

a build index process. The data set consists of 68 attributes and 48,536 rows. We generated

simulations using ℓ = 5 and ℓ = 10. Table 1 shows the results of the simulations, where ν (ℓ) is

the measured ratio of the total storage size over the number of documents, i.e., |A|/N.

Table 1. Storage size in usual cases

rows 10,000 20,000 30,000 40,000

(5)ν 1.283 1.164 1.119 1.095

(10)ν 41.649 28.050 22.139 18.566

We can easily deduce that this ratio decreases more as the size of the database becomes

larger.

Trapdoor Size: The trapdoor is only one link, independent of the number of keywords,

which are queried conjunctively. More precisely, log μ = log 2
ℓ
·N = ℓ + log N bits are

sufficient for an address in the array A, and the encryption key is λ bits. Therefore, the size of a

trapdoor is ℓ + log N + λ bits.

Computational Cost: First, consider the computational cost for a query. Assume that si’s

are sets of keywords satisfying s1 ⊂ s2 ⊂ s3 ⊂ … ⊂ sℓ. If s1 is queried then the result of the

query is D (s1) ∪D (s2) ∪ … ∪D (sℓ). Therefore, the number of documents in the result is

|D (s1)| + |D (s2)| +…+ |D (sℓ)|, say m.

Note that the amount of computation for search is decrypting all nodes in T(s1), T(s2), …,

T(sℓ), where T(si) is the linked tree corresponding to si. If |D (si)| > 0 then the number of nodes

in T(si) is equal to |D (si)|. On the other hand, |D (si)| = 0 implies T(si) has just one node, the

root node. Therefore, if |D (si)| > 0 for all i, then the computation cost is |D (s1)| + |D (s2)|

+…+ |D (sℓ)| decryptions, i.e. m decryptions. If |D (si)| = 0 for some i, then the cost increases.

In the worst case, |D (s1)| = |D (s2)| = … = |D (sℓ-1)| = 0 and |D (sℓ)| = m implies that the

computation cost is 1 + 1 + … + 1 + m = ℓ - 1 + m decryptions. This means that the actual

amount of work for the server is strictly smaller than ℓ + m decryptions and table searches.

For an empty query, the server terminates the process if a check bit which equals to 0 is

found. Remind that if a trapdoor, 〈v;k〉, is for an empty query, then k is not a proper secret key

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013 1339

Copyright ⓒ 2013 KSII

for A[v]. The probability of Dk(A[v]) provides 0 for the check bit is 1/2. It means that the

probability of the server terminates search procedure for empty query within 1 decryption is

also 1/2. Similarly, the server terminates the search within 2 decryption if the first check bit is

1 and the second check bit is 0, i.e. probability = 1/2 × 1/2. Therefore, the expectation value can be

summarized as

1·(1/2) + 2·(1/2)
2
 + 3·(1/2)

3
 + … = 






1
(1/2)

m

mm

For any |x| < 1, 





1

2)/(1
m

m xxmx = (1/2)/(1/2)
2
 = 2. This means that in average 2 nodes are

checked for an empty query.

Recall that array A consists of at most v(ℓ)·N nodes. In the buildIndex procedure, the

amount of work conducted by the user is also O(v(ℓ)·N) for the following reasons: In Step 1,

for each document, there are at most v(ℓ) keyword sets, and thus N× O(v(ℓ)) is sufficient. In

Step 2(a), the initialization of v(ℓ)·N nodes requires O(v(ℓ)·N). In Step 2(b), the amount of

work is O(|P |), where |P | ≤ N×v(ℓ). In Step 2(d), only N nodes are modified. In Steps 2(e) and

2(f), the number of total external links are bounded by v(ℓ)·N, and thus the amount of work is

also O(v(ℓ)·N).

4.3 Security

Theorem 1: The proposed scheme satisfies non-adaptive indistinguishability security.

(Proof) For the proof, we define a simulator which is a probabilistic polynomial-time

algorithm. We assume that with the input Tr(H
(q)

), S can generate)()(qHV
~

 which is

indistinguishable from V(H
(q)

). We claim that constructing such a simulator is sufficient to

prove the above theorem. Remind that the proposed scheme is secure in the sense of

non-adaptive indistinguishability, if for all positive integers q, all (non-uniform) probabilistic

polynomial-time adversaries A = (A1, A2), all polynomials p, and all sufficiently large k,

,
)(

1

2

1
state)]),(({0,1}; ;state),,(|Pr[)(

21

)(

1

)(

0
kp

HVb'bHHbb' q

bR

qq  AA

where (H0
(q)

, H1
(q)

) are histories over q queries such that Tr(H0
(q)

) = Tr(H1
(q)

), the ‘state’ is a

polynomially bounded string that captures A1’s state, and the probability is taken over the

internal coins of A, and the underlying BuildIndex algorithm.

Assume that if there exists A2 that can find b′ with a probability of significantly greater than

1/2, then it means that A2 can distinguish V(H0
(q)

) from V(H1
(q)

) with non-negligible probability.

From the existence of S which can simulate the view from the trace, and the fact of Tr(H0
(q)

) =

Tr(H1
(q)

), we have S(Tr(H0
(q)

)) = S(Tr(H1
(q)

)). By the definition of S, V(H0
(q)

) is

indistinguishable from S(Tr(H0
(q)

)), and that V(H1
(q)

) is also indistinguishable from S(Tr(H1
(q)

)).

Therefore, there are no polynomial time distinguishers that can distinguish V(H0
(q)

) from

V(H1
(q)

), which is contradictory to the assumption that A2 can find b′ with a probability

significantly greater than 1/2. This ends the proof.

To prove the claim, we start with the construction of S(Tr(H
(0)

)). For q = 0, S generates

),(,),((1

(0)

NDidDidV
~

)),(,),(1 A
~

DE
~

DE
~

N such that each id(Di) is copied from)((0)HTr

and ||
{0,1})(iD

RiDE
~

 for 1 ≤ i ≤ N. Finally, S constructs A
~

 as follows: S makes A
~

 into an

array with μ elements, where each element is a random string with the same length as an

element in A.

1340 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

We claim that no probabilistic polynomial-time adversary A can distinguish (0)V
~

 from

V(H
(0)

) = (id(D1), …, id(DN), E(D1), …, E(DN), A) for any H
(0)

. By a standard hybrid argument,

if there exists an adversary A that can distinguish (0)V
~

 from V(H
(0)

), then we can easily deduce

that A can distinguish at least one of the elements of (0)V
~

 from its corresponding element in

V(H
(0)

). Note that the view of history consists of three types of elements, the document

identifiers, encrypted documents, and the array A. Since the document identifier in (0)V
~

 is

exactly the same as that in V(H
(0)

), it is not possible to distinguish the identifiers. From the

security of the embedded encryption algorithm, a ciphertext E(Di) is indistinguishable from a

random string)(iDE
~

. Finally, note that each element of array A is also encrypted using a

semantically secure encryption scheme, and therefore cannot be distinguishable from a

random string with the same length.

For q > 0, S constructs ,,,),(,),((11

)(

NN

q E
~

E
~

DidDidV
~

),,,1 A
~

T
~

T
~

q , such that id(Di) is

copied from Tr(H
(q)

) and ||
{0,1})(iD

RiDE
~

 for 1 ≤ i ≤ N. Recall that Tr(H
(q)

) = (id(D1), …,

id(DN), |D1|, …, |DN|, D(s1), …, D(sq), Πq). To build A
~

, S chooses a symmetric key encryption

algorithm E
~

, random secret key k
~

, and two pseudorandom functions f
~

 and h
~

, randomly. S

also sets
021)()()(DDDDD

~
sss

~
q  , where

0D
~ is a set of dummy documents to make

N
~
||D . Assume that

0D
~ contains no documents matched to any si. S runs Build

index),(h
~

,f
~

,k
~

,E
~~

 D and can obtain an array A
~

. Finally, S generates trapdoors
iT

~
 as a link for

the root node of the linked tree T(s1).

We again claim that no probabilistic polynomial-time adversary A can distinguish)(qV
~

from V(H
(q)

) = (id(D1), …, id(DN), E(D1), …, E(DN), T1, …, Tq, A). By a standard hybrid

argument, if there exists an adversary A that can distinguish)(qV
~

 from V(H
(q)

), then we can

easily deduce that A can distinguish at least one of the elements of)(qV
~

 from its corresponding

element in V(H
(q)

). Identifiers and encrypted documents are also indistinguishable by the same

reason for the case of q = 0.

Every node in A
~

 is encrypted by a semantically secure encryption algorithm. Therefore,

from the security of the encryption algorithm, we can deduce that no polynomial-time

adversary can distinguish these nodes from the nodes in A. For the trapdoor, we should check

whether the given trapdoor makes correct output. In other words, using the given trapdoor
iT

~
,

we must be able to obtain the list of documents D(si). Note that A
~

 is generated from

021)()()(DDDDD
~

sss
~

q  . Therefore A
~

 contains a linked tree for D(si) and
iT

~

represents the link to the root node of corresponding linked tree. Thus, we can obtain the same

results though the regular search process using the given trapdoors. This means that no

adversary can distinguish A
~

 from A.

4.4 Comparison

Previously proposed searchable encryption protocols with a conjunctive keyword search

mainly utilize public-key cryptosystem based techniques, particularly a bilinear map over

elliptic curves. Thus, these protocols have different properties and advantages (or

disadvantages) from those of our scheme. In our construction, we focused on optimizing

efficiency of searching process. As a result, we provide the first conjunctive keyword search

method of which the search time is independent from the number of all stored documents.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013 1341

Copyright ⓒ 2013 KSII

Note that the other protocols require O(N) computation for search. It means that for searching

only one document millions (or billions) of pairing (or secret sharing) computations are

required. However, our protocol has a weakness in the storage size (multiplied by v(ℓ) rather

than ℓ). The value of v(ℓ) is changed by the stored data type. For the data-set in which same

keywords are frequently repeated (for example zip-code, age, etc.), v(ℓ) has a very small value

and the weakness can be mitigated.

We provide a comparison in the table below. In the table, N is the number of all documents,

ℓ is the maximum number of keywords which is queried conjunctively, v(ℓ) is a constant

determined by the characteristic of a given data set, m is the number of matched documents, m′

is the number of documents which are matched to one of conjunctively queried keywords

(usually m′ > m), ‘pairing’ means computation of bilinear map over EC, and ‘SD’ means

computation of symmetric key decryption.

Table 2. Comparison

Encryption

type
Index size

Trapdoor

size

Computation Cost for

Search

GSW04[10] Public key O(ℓ·N) O(1) (2ℓ+1)·N × (pairing)

BW07[12] Public key O(ℓ·n·N) O(ℓ) (2ℓ+1)·N × (pairing)

BKM05[11]
Pairing Symmetric

key

O(ℓ·N) O(1) 2N × (pairing)
Secret

Sharing O(ℓ·N) O(N) N × (secret sharing)

CJJ13[13]
Symmetric

key
O(ℓ·N) O(m′·ℓ) m′·ℓ × (exponentiation)

Proposed scheme
Symmetric

key
O(v(ℓ)·N) O(1))(m × (SD)

5. Conclusion

We proposed a new protocol for a conjunctive keyword search on encrypted databases. The

protocol is based on a linked tree structure instead of public-key cryptosystem based

techniques, which were usually adopted in previous conjunctive keyword search protocols.

Since the new protocol utilizes only a symmetric-key cryptosystem, it requires a remarkably

small computation cost for managing an extremely large database. Moreover, this is the first

conjunctive keyword search protocol in which the search time is independent of the size of the

entire database. It was proven to be non-adaptive indistinguishability secure. We expect that

the proposed scheme can be improved to satisfy the adaptive indistinguishability security with

the further works.

References

[1] R. Ostrovsky, “Efficient computation on oblivious RAMs,” in Proc. of 22nd Annual ACM

Symposium on Theory of Computing, pp.514-523, May 13-17, 1990. Article (CrossRefLink).

[2] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious RAMs,” Journal

of the ACM, 43(3), pp.431-473, May, 1996. Article (CrossRefLink).

[3] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in Proc.

of IEEE Symposium on Security and Privacy 2000, pp. 44-55, May 14-17, 2000. Article

(CrossRefLink).

http://dx.doi.org/10.1145%2F100216.100289
http://dx.doi.org/10.1145/233551.233553
http://dx.doi.org/10.1109%2FSECPRI.2000.848445
http://dx.doi.org/10.1109%2FSECPRI.2000.848445

1342 Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

[4] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive 2003/216, 2003. Article (CrossRefLink) .

[5] S. Bellovin and W. Cheswick, “Privacy-enhanced searches using encrypted Bloom filters,”

Cryptology ePrint Archive 2004/022, 2004. Article (CrossRefLink) .

[6] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote encrypted

data,” in Proc. of Applied Cryptography and Network Security Conference (ACNS), pp. 442-455

June 7-10, 2005. Article (CrossRefLink).

[7] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption:

Improved definitions and efficient constructions,” in Proc. of ACM CCS 06, pp. 79-88, October 30

– November 3, 2006. Article (CrossRefLink).

[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption with keyword

search,” in Proc. of Eurocrypt 2004, pp. 506-522, May 2-6, 2004. Article (CrossRefLink).

[9] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P.

Paillier, and H. Shi, “Searchable encryption revisited: Consistency properties, relation to

anonymous IBE, and extensions,” in Proc. of Crypto 2005, pp. 205-222, August 14-18, 2005.

Article (CrossRefLink).

[10] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over encrypted data,” in

Proc. Applied Cryptography and Network Security Conference (ACNS), pp. 31-45, June 8-11,

2004. Article (CrossRefLink).

[11] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient conjunctive keyword searches over

encrypted data,” in Proc. of ICICS 2005, pp. 414-426, December 6-9, 2005. Article

(CrossRefLink).

[12] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,” in Proc. of

TCC 2007, pp. 535-554, February 21-24, 2007. Article (CrossRefLink).

[13] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Highly-scalable searchable

symmetric encryption with support for Boolean queries,” IACR ePrint Cryptography Archive

2013/169, 2013.

[14] 1990 US census data, http://kdd.ics.uci.edu .

Nam-Su Jho received his B.S. degree in mathematics from Korea Advanced Institute

of Science and Technology, Daejeon, Korea, in 1999 and the Ph. D. degree in

mathematics from Seoul National University, Seoul, Korea, in 2007. Since 2007, He

has been with Electronics and Telecommunications Research Institute as a senior

member of engineering staff. His research interests include cryptography, data

privacy, and information theory.

Dowon Hong received his B.S., M.S. and Ph.D. degrees in mathematics from Korea

University, Seoul, Korea on 1994, 1996, and 2000. He has been a principal member of

engineering staff of Electronics and Telecommunications Research Institute, Korea

from 2000 to 2012. Since March 2012, he has been an associate professor of the

Department of Applied Mathematics at Kongju National University, Korea. His

research interests include cryptography and information security, data privacy, and

digital forensics.

http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2004/022
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1145%2F1180405.1180417
http://dx.doi.org/10.1007%2F978-3-540-24676-3_30
http://dx.doi.org/10.1007%2F11535218_13
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007%2F11602897_35
http://dx.doi.org/10.1007%2F11602897_35
http://dx.doi.org/10.1007%2F978-3-540-70936-7_29
http://kdd.ics.uci.edu/

