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Abstract 
 

Searchable encryption is a cryptographic protocol for searching a document in encrypted 

databases. A simple searchable encryption protocol, which is capable of using only one 

keyword at one time, is very limited and cannot satisfy demands of various applications. Thus, 

designing a searchable encryption with useful additional functions, for example, conjunctive 

keyword search, is one of the most important goals. There have been many attempts to 

construct a searchable encryption with conjunctive keyword search. However, most of the 

previously proposed protocols are based on public-key cryptosystems which require a large 

amount of computational cost. Moreover, the amount of computation in search procedure 

depends on the number of documents stored in the database. These previously proposed 

protocols are not suitable for extremely large data sets. 

In this paper, we propose a new searchable encryption protocol with a conjunctive keyword 

search based on a linked tree structure instead of public-key based techniques. The protocol 

requires a remarkably small computational cost, particularly when applied to extremely large 

databases. Actually, the amount of computation in search procedure depends on the number of 

documents matched to the query, instead of the size of the entire database. 
 

 

Keywords: Searchable encryption, database encryption, data privacy, conjunctive keyword 

search 
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1. Introduction 

As the amount of data is greatly increasing, methods for storing and managing data 

efficiently are attracting more interest and many solutions have been developed. The use of a 

remote database service is the most common and convenient method to manage huge data sets. 

However, storing sensitive data in a remote database in which the database manager is 

different from the data owner can cause many side effects. In particular, a privacy breach of 

the stored data is the most important issue. Remote database service providers have adopted 

various means such as user authentication or access control to maintain the privacy of the 

stored data. However, these are not fundamental solutions, as a database service provider can 

easily access the stored data. Another way to maintain the privacy of the stored data is to apply 

an encryption system. Well developed and designed encryption systems guarantee the secrecy 

of encrypted data theoretically. Adopting encryption system creates another problem, that is, 

encryption systems conceal too much information, thereby preventing useful database 

operations such as searching or sorting. Searchable encryption is proposed for solving this 

problem, allowing an efficient search of encrypted documents and maintaining the secrecy like 

encryption systems. 

A method to search data while maintaining privacy was first researched by Ostrovsky and 

Goldreigh [1], [2]. The result of their work, oblivious RAMs, has different characteristics from 

searchable encryption systems. However, oblivious RAMs became the basis of searchable 

encryption systems in later research. In 2000, Song et al. introduced a formal definition of the 

searchable encryption and proposed several solutions [3]. Through many researches such as 

[4]-[6] the basic structure of searchable encryption was developed and formalized so that 

additional information, called an index, is stored in the server along with encrypted documents. 

Goh also introduced notions of security for searchable encryption focusing on an index: 

non-adaptive indistinguishability security against a chosen keyword attack (IND-CKA) and 

adaptive indistinguishability security against a chosen keyword attack (IND2-CKA) [4]. In 

2006, Curtmola et al. revised the IND2-CKA security along with the first searchable 

encryption using a linked chain structure in which the searching time is independent of the 

number of total encrypted documents [7]. This formal structure and these security notions 

have been widely adopted in recent studies. There have also been attempts at constructing 

searchable encryption that supports public-key encryption, i.e., anyone can provide encrypted 

documents and indexes using a public-key, where searching and decryption is only available 

for the owner of a secret key [8], [9]. 

Basic searchable encryption provides a search method that finds documents corresponding 

to a single keyword. However, this basic search method is very limited and cannot satisfy the 

various demands that naturally arise. Therefore, designing a searchable encryption with 

additional search functions is one of the most important goals. Additional search functions that 

are frequently remarked upon include conjunctive keyword search, range query, ordering, and 

size comparison. In this paper, we concentrate on the conjunctive keyword search problem. 

In conjunctive keyword search a query consists of multiple keywords for search, and a 

search procedure results list of documents which are matched to all of the keywords without 

revealing any other information. A conjunctive keyword search is frequently used for 

searching documents in everyday life. By using a basic keyword search algorithm repetitively, 

one can obtain similar results for conjunctive keyword search, i.e. the list of documents that 

contain all keywords, for a queried keywords {w1, w2, …, wδ}. However, this method is 
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inefficient, and the secrecy of searched data is also breached. If a server performs a basic 

search method for each single keyword in {w1, w2, …, wδ}, then the server obtains D(w1), 

D(w2), …, D(wδ) separately, where D(wi) means the set of documents including the keyword wi, 

and obtains the final result by computing D(w1) ∩ D(w2) ∩ … ∩ D(wδ). In this process, the 

server has to perform δ  independent processes separately, which is very inefficient. Moreover, 

the server can obtain information for intermediate results, D(w1), D(w2), …, D(wδ).  

Searchable encryption providing a conjunctive keyword search has been mainly constructed 

using techniques based on public-key cryptosystems, especially a bilinear map over elliptic 

curves [10]-[13]. In addition, the amount of computation which is required in the search 

procedure is proportional to the number of stored documents. This means that millions of 

public-key based decryptions or bilinear map computations can be required for just one query. 

Therefore, we focus on constructing a searchable encryption system with conjunctive keyword 

search using symmetric encryption system only. Our protocol provides remarkably efficient 

search algorithm. 

2. Preliminaries 

2.1 Searchable Symmetric Encryption Using a Linked Chain 

In 2006, Curtmola et al. proposed a searchable symmetric encryption (SSE) using a linked 

chain structure along with security definitions for SSE [7]. We present brief introduction of the 

protocol proposed by Curtmola. The protocol consists of four algorithms, KeyGeneration, 

BuildIndex, Trapdoor, and Search. 

 

KeyGeneration  

1. The user prepares a symmetric encryption system, E, which is proven to be secure. 

From now on, Ek(m) represents a cipher-text of a message m using a secret key k.  

2. The user also selects two cryptographically secure one-way (pseudorandom) functions, 

f and h, which are kept secret. 

 

BuildIndex (D, E, k, f, h) 

1. Initialization 

A. Scan D, the set of all documents, to build Δ′, the set of distinct keywords in D. 

B. For each keyword w ∈ Δ′, build D(w), the set of documents that contains the 

keyword w. 

2. Build array A 

A. For each wi∈Δ′, build a linked list, Li 

i. compute vi,0 = f(wi) and ki,0 = h(wi) 

ii. for 1 ≤ j ≤ |D(wi)| 

1. randomly generate vi,j and ki,j 

2. set a node Ni,j = 〈 id(Di,j) || vi,j || ki,j 〉, where id(Di,j) is the identifier of the 

j-th document in D(wi)  

3. compute )( ji,k NE
1ji, 

, and store it in A[vi,j-1]  
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iii. for the last node of Li (i.e., 
|)( iw|i,N D ), before encryption, set the address of the 

next node to ‘empty’ 

B. set the remaining entries of A to random values of the same size as the existing 

entries of A 

3. Output the index A 

 

Trapdoor(w) : Output Tw = (h(w), f(w)) 

 

Search(A, Tw = (h(w), f(w)) 

 

1. Decrypt the linked list L starting with the node at address vw encrypted under key kw 

2. Output the list of document identifiers contained in L 

 
Fig. 1. Linked chain structure 

 

3.2 Security Definition 

We also present the security notions proposed by Curtmola [7]. 

A history is an interaction between a user and a server. If we assume that a user makes q 

queries, then the history, H
(q)

, can be uniquely determined by the collection of documents, 

which is stored at the server, and q queries. Thus, we can define a history as H
(q)

 = (D , w1, …, 

wq), where D is a collection of all documents, and each wi is a queried keyword.  

Intuitively, the history is what the user wants to hide from the server. However, the server 

knows identifiers of documents, encrypted documents, and the index. During interaction, the 

server obtains more information such as trapdoors, the number of documents matched with the 

given trapdoors. A set of this information, i.e., what an adversary actually gets to “see”, is 

called a view of the given history. Formally, we can define a view of history H
(q)

, as V(H
(q)

) = 

(id(D1), …, id(DN), E(D1), …, E(DN), ID, T1, …, Tq), where E(D) indicates a ciphertext of D, ID 

is an index, and Ti is a trapdoor.  

A trace means the information about a history, which is leaked. The outcome of each 

search procedure, a collection of identifiers of documents that contain each queried keywords, 
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is leaked to the server. The pattern of searches, the information of correspondence between 

two trapdoors, is also revealed to the server. Moreover, since the encrypted documents are 

stored on the server, we can assume that the information about these encrypted documents and 

their identifiers are also leaked. Formally, the trace, Tr(H
(q)

), can be defined as Tr(H
(q)

) = 

(id(D1), …, id(DN), |D1|, …, |DN|, D(w1), …, D(wq), Π
(q)

), where Π
(q)

 indicates the user's search 

pattern, Π
(q)

[i, j] = 1 if wi = wj; otherwise, Π
(q)

[i, j] = 0 for 1 ≤ i,j ≤ q. Substituting a single 

keyword, wi, into a keyword set, si, we can adopt these definitions for a conjunctive keyword 

search. The pattern of search Π
(q)

 is also changed to Π
(q)

[i, j] = 1 if si ⊆sj; otherwise, Π
(q)

[i, j] = 

0 for qji, 1 . 

Definition (Non-Adaptive Indistinguishability Security for SSE) An SSE scheme is secure 

in the sense of non-adaptive indistinguishability if for all q, all (non-uniform) probabilistic 

polynomial-time adversaries A = (A1, A2), all polynomials p, and all sufficiently large k,  

,
kp

HVb'bHHbb' q

bR

qq

)(

1

2

1
state)]),(({0,1}; ;state),,(|Pr[ )(

21

)(

1

)(

0  AA  

where (H0
(q)

, H1
(q)

) are histories over q queries such that Tr(H0
(q)

) = Tr(H1
(q)

), the ‘state’ is a 

polynomially bounded string that captures A1’s state, and the probability is taken over the 

internal coins of A and the underlying BuildIndex algorithm. 

The searchable encryption protocol presented in the previous section satisfies non-adaptive 

indistinguishability security. 

3. Construction 

3.1 Basic Idea 

Before describing the formal construction, we introduce the basic ideas utilized for 

constructing conjunctive keyword search from the searchable encryption of Curtmola. 

Among the keyword sets (i.e., conjunctive keyword queries), there are inclusion relations. 

For example, if there are two keyword sets s1 and s2 satisfying s1⊆s2, then D(s1)⊇D(s2), where 

D(si) indicates the set of documents corresponding to the keyword set si. In this case, D(s1) can 

be considered the union of two sub-sets: one sub-set is D(s2), which is included in both results 

for queries s1 and s2, and the other sub-set is the differential ‘D(s1) ­ D(s2)’, which is included 

in the result for query s1 only. Therefore, all documents in D(s2) should be included in two 

linked chains. Instead, we can construct two chains, one is for D(s2) and the other is for D(s1) ­ 
D(s2), and create a link between the chains (which we call an external link). For the query s1, 

the searching procedure starts from the chain corresponding to D(s1) ­ D(s2), and continues 

following the external link to the chain corresponding to D(s2). Thus, the search algorithm can 

cover all documents of D(s1). Note that searching for query s2 is trivial. Similarly, we can deal 

with the keyword sets with the relation s1⊂s2⊂s3⊂… by connecting the corresponding 

linked chains sequentially. 
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Fig. 2. External link 

 

However, a real conjunctive keyword search is more complicated. In real document sets, 

incursion relations among keyword sets are not linear, but rather make up a kind of net. Thus, 

each linked chain requires many external links. In linked chain structure, each linked chain has 

only one empty end point, and it is too small to cover the required external links. To solve this 

problem, we expanded the linked chain structure into a linked tree structure. The expansion is 

easily accomplished by adding one additional link to each node. 

 
Fig. 3. Expansion into a linked tree structure 

 

Note that when each linked chain is rearranged into a linked tree structure, each linked tree 

needs not be balanced. Instead, each node is added to the tree at a randomly chosen position. 

Finally, we can easily manage any conjunctive keyword search connecting external links 

between linked trees 

3.2 Formal Description 

Searchable symmetric encryption consists of four algorithms, key generation, build index, 

trapdoor, and search. Without loss of generality, we assume that data set D consists of N 

documents, and each document is an ordered tuple of ℓ keywords, Di = (wi,1, wi,2, …, wi,ℓ). 
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Fig. 4. Conjunctive search using a linked tree structure 

 

Key Generation 

There are two security parameters, λ and μ, where λ represents the size of the secret key, 

and μ is a constant determined from the size of the data set to be encrypted. The user prepares 

a symmetric encryption system E which uses λ-bit encryption keys. The user also selects a 

λ-bit secret key k and two one-way (pseudorandom) functions f :{0,1}
*
[1,μ] and h : [1,μ]  

{0,1}
λ
. k, f, and h are kept secret. 

 

Build Index 

Build index (D, E, k, f, h) outputs an array A which consists of μ elements. Each element of 

A is the ciphertext of a tuple, 

A[ind] = E(IDind || 〈 LDind ; LKind 〉 || 〈 RDind ; RKind 〉|| bind).  

IDind is a document identifier. 〈 LDind ; LKind 〉 and 〈 RDind ; RKind 〉 are left and right links, 

respectively. Thus, each element can perform the role of a parent node with two children. LDind 

and RDind represent addresses in array A, LKind and RKind are λ-bit keys used in performing 

encryption E. Finally, bind is one-bit information. 

 

Build index (D, E, k, f, h) 

1. Preparation  

A. For each document Di ∈D 

i. Build Δi, the set of all distinct keywords in Di 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013                                 1335 

Copyright ⓒ 2013 KSII 

ii. Define Pi   ααα i ,2 | :
Δ ,  i.e., Pi is the power set of Δi, or the set of all 

conjunctive keywords in Di 

B. Define P = ∪1≤i≤N Pi, so that P is the set of all possible (conjunctive) queries which 

has at least one corresponding document in D 

2. Build Index A  

A. Initialization  

i. Make an array A with μ elements.  

ii. Each element of A is a tuple of following form 

A[ind] = (IDind, 〈 LDind ; LKind 〉, 〈 RDind ; RKind 〉, bind). 

iii. Initially, each IDind, LDind, and RDind are set to ‘EMPTY’ and bind is set to 0, 

where EMPTY indicates a special pre-assigned character.  

B. Marking a starting point for each si ∈P. Note that si is a set of keywords, i.e., si = 

...} , ,{
21 ii w'w' . We can re-arrange si as an ordered tuple 

is  = (
,1iw , 

,2iw , …, ,iw ), 

where wi,j may represent a special keyword ‘NONE’.  

i. Compute ind(
is ) = f(wi,1 || wi,2 || … || wi,ℓ).  

ii. Find the node A[ind(i)] and set bind(i) to be 1. 

C. Separate D into disjoint subsets 

i. Define )( isD  be )()(
,

j
sss

i ss
jji

DD
P

- , i.e. the set of all documents those are 

exactly related to si. 

ii. So that D = ∪ )( isD , and  )()( ji ss DD  ø for any i ≠ j. 

D. Storing documents (for each si ∈P)  

i. Choose | )( isD |-1 empty nodes (the node satisfying the condition of bind = 0) 

in A randomly.  

ii. Construct a linked tree over | )( isD | nodes. Note that the root node should be 

the starting point, A[ind(
is )], selected at the step (B). And the other | )( isD |-1 

nodes selected at the previous step are randomly arranged.  

- Constructing tree structure is simply storing address of child node at 

LDind or RDind of the parent node. 

- If A[ind1] and A[ind2] are two children of A[ind3], then the value of ind1 

and ind2 are stored at 
3indLD and 

3indRD , respectively. And 
3indKL  and 

3indKR  are filled with λ-bit encryption keys, h(ind1) and h(ind2). 

- If A[ind3] has only one child node, then one of 
33

; indind LKLD and 

33 indind RKRD ;  is remained EMPTY, i.e. empty link. 

- If A[ind3] is a leaf node then it has two empty links. 

iii. Store identifiers of documents in )( isD  at nodes in the tree, Each node stores 

one identifier. 

iv. We denote the tree as T(si).   
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E. Connecting linked trees (for each keyword set si∈P)  

i. For each sj∈P satisfying the conditions, si⊂sj and |si| + 1 = |sj|, construct an 

external link from T(si) to T(sj) as follows.  

ii. Randomly select a node A[x] from T(si) which has at least one empty link, i.e., 

LDx = EMPTY or RDx = EMPTY (here, we assume that the left link is empty). 

Then store ind(
js ) and h(ind(

js )) in LDx and LKx, respectively.  

iii. If there is no node with an empty link in T(si), then extend the linked tree as in 

step (F).  

F. Extending a linked tree  

i. Randomly choose a node from T(si) and an empty node from A, say A[x] and 

A[y], respectively.  

ii. Move one link of A[x] to A[y], i.e., the values of LDx and LKx are stored at LDy 

and LKy, respectively (here, we may select the right link instead). 

iii. y, the address of A[y] is stored at LDx and h(y) is stored at LKx.  

iv. IDy is filled with a dummy identifier that cannot be distinguished by anyone 

except the data owner.  

v. Insert A[y] into T(si), then T(si) has a node with an empty link for an external 

link. 

G. Fill remaining nodes  

i. Fill remaining nodes of A, which are still empty, with a random bit string 

while keeping the value of bind as 0.  

ii. For every i, if IDi is empty then fill IDi with a random bit string. 

H. Encryption  

i. Encrypt each node A[i] using the encryption key h(i).  

3. Output A 

 

Trapdoor 

To make a query about keywords w1, w2, …, wℓ conjunctively, the user computes the 

following:  

Trapdoor(w1, w2, …, wℓ) = 〈f(w1 || w2 || … || wℓ), h(f(w1 || w2 || … || wℓ)) 〉.  

Here, wi may have a value ‘NONE’. 

 

Search 

The search process is simply collecting document identifiers in the linked tree starting from 

the node corresponding to the given trapdoor. 

 

Search( A, 〈v;k〉) 

1. Initialization 

A. Generate set of links L ={〈v;k〉}, and set of result R = ø. 

2. Search 

A. Randomly select a link 〈α;β〉 from L and remove it from L. 
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B. Decrypt the node A[a],  

Dβ(A[α]) =  (IDα, 〈LDα ; LKα〉, 〈RDα ; RKα〉, bα). 

C. If 
b  = 0, then terminate the search process and return ‘EMPTY’. 

D. Otherwise, two links 〈LDα ; LKα〉 and 〈RDα ; RKα〉 are inserted into L , and IDα 

is inserted into R, respectively 

E. Iterate the above procedures until L is empty. 

3. Output R 

4. Analysis 

4.1 Correctness 

For a keyword set 
1s = {w1,1, w1,2, …, w1,ℓ}, let T(s1) be the linked tree previously defined. It is 

clear that for any node in T(s1), there is a linked chain from the root node, A[f(w1,1 || w1,2 || … || 

w1,ℓ)]. Therefore, with a trapdoor, 〈 f(w1,1 || w1,2 || … || w1,ℓ), h(f(w1,1 || w1,2 || … || w1,ℓ)) 〉, the user 

can receive all documents contained in T(s1). However, there are more documents 

corresponding to the query, s1. 

For any keyword set s2 satisfying s1⊂s2, there exists at least one increasing chain, s1 = s′1 

⊂ s′2 ⊂ … ⊂ s′δ = s2, with |s′i| + 1 = |s′i+1|. This means that there is an external link from T(s′i) 

to the starting point of T(s′i+1). Therefore, with the query s1, the result contains all documents 

corresponding to all keyword sets, s′1, s′2, …, s′δ, i.e., all documents containing the keywords 

set, s1. 

Note that the user may generate a trapdoor for a keyword set corresponding to no document, 

i.e., an empty query. Therefore, a method to distinguish a proper query from an empty one is 

needed. Recall that each node has a check bit bind and the reply is made only if every check bit 

of the decrypted nodes has the proper value. 

We claim that the probability of a server making a wrong reply for an empty query is 

negligible. The reason for this is easy to understand. Note that if a trapdoor, 〈v;k〉, is for an 

empty query, then k is not a proper secret key for A[v]. The server can compute Dk(A[v]) 

properly, but the server obtains a random string after decryption. This means that the server 

receives random links again. The process is terminated with a wrong result if all random links 

have an EMPTY value and all check bits have a value of 1. The probability that one link has the 

value of EMPTY is almost 1/μ. Recall that μ indicates the number of elements in A. The 

probability that the server will terminate the process properly after searching m nodes is (1/2)
m
 

× 1/μ
m+1

. Finally, the probability that the server will generate a wrong reply is 






1

1 )1/(2
m

mm μ . 

For a large μ, this can be summarized as 1/(2μ
2
 - μ). 

Up to this point, we have not considered a collision of f, an event in which f outputs the 

same value for different inputs. A collision disturbs the construction of a linked tree structure. 

The more that array A is filled, the more serious collision effect becomes. In the proposed 

protocol, however, only the starting point of a linked tree is influenced by a collision. The 

other elements are randomly chosen among empty elements instead of the output of f. 

Compared to the size of A, the number of starting points is very small, and thus the starting 

points are very sparsely positioned in A. Since there are many well-developed methods used to 
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manage a sparse hash table efficiently, we can solve the collision problem easily (usually, at 

the cost of slightly increased storage). In this paper, we omit the details of such a solution. 

4.2 Efficiency 

Size of array A: We claim that v(ℓ)·N nodes are sufficient to store all linked trees. Here, 

we will provide a practical bound for v(ℓ). 

Recall that v(ℓ) means the number of all possible conjunctive keywords consist of at most ℓ 

keywords and the bound for v(ℓ) is v(ℓ) ≤ nC1 + nC2 + … + nCℓ, where n means the number of all 

possible keywords. However, this bound is not reasonable when it is applied to the storage size. 

Remind that in the BuildIndex algorithm only queries which correspond to at least one 

document are stored, i.e. no empty query is stored. Since each document has at most ℓ 

keywords, in the viewpoint of storage v(ℓ) is bounded as v(ℓ) ≤ ℓC1 + ℓC2 + … + ℓCℓ = 2
ℓ
 -1. 

This is also theoretical bound for v(ℓ). In a typical case, many common keywords exist in a 

database, and thus the actual number of nodes required greatly decreases. To measure the 

storage size in a typical case, we select a real data set, 1990 US census data [14], and simulate 

a build index process. The data set consists of 68 attributes and 48,536 rows. We generated 

simulations using ℓ = 5 and ℓ = 10. Table 1 shows the results of the simulations, where ν (ℓ) is 

the measured ratio of the total storage size over the number of documents, i.e., |A|/N. 

Table 1. Storage size in usual cases 

rows 10,000 20,000 30,000 40,000 

(5)ν  1.283 1.164 1.119 1.095 

(10)ν  41.649 28.050 22.139 18.566 

We can easily deduce that this ratio decreases more as the size of the database becomes 

larger. 

 

Trapdoor Size: The trapdoor is only one link, independent of the number of keywords, 

which are queried conjunctively. More precisely, log μ = log 2
ℓ
·N = ℓ + log N  bits are 

sufficient for an address in the array A, and the encryption key is λ bits. Therefore, the size of a 

trapdoor is ℓ + log N + λ bits. 
 

Computational Cost: First, consider the computational cost for a query. Assume that si’s 

are sets of keywords satisfying s1 ⊂ s2 ⊂ s3 ⊂ … ⊂ sℓ. If s1 is queried then the result of the 

query is D (s1) ∪D (s2) ∪ … ∪D (sℓ). Therefore, the number of documents in the result is 

|D (s1)| + |D (s2)| +…+ |D (sℓ)|, say m.  

Note that the amount of computation for search is decrypting all nodes in T(s1), T(s2), …, 

T(sℓ), where T(si) is the linked tree corresponding to si. If |D (si)| > 0 then the number of nodes 

in T(si) is equal to |D (si)|. On the other hand, |D (si)| = 0 implies T(si) has just one node, the 

root node. Therefore, if |D (si)| > 0 for all i, then the computation cost is |D (s1)| + |D (s2)| 

+…+ |D (sℓ)| decryptions, i.e. m decryptions. If |D (si)| = 0 for some i, then the cost increases. 

In the worst case, |D (s1)| = |D (s2)| = … = |D (sℓ-1)| = 0 and |D (sℓ)| = m implies that the 

computation cost is 1 + 1 + … + 1 + m = ℓ - 1 + m decryptions. This means that the actual 

amount of work for the server is strictly smaller than ℓ + m decryptions and table searches. 

For an empty query, the server terminates the process if a check bit which equals to 0 is 

found. Remind that if a trapdoor, 〈v;k〉, is for an empty query, then k is not a proper secret key 
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for A[v]. The probability of Dk(A[v]) provides 0 for the check bit is 1/2. It means that the 

probability of the server terminates search procedure for empty query within 1 decryption is 

also 1/2. Similarly, the server terminates the search within 2 decryption if the first check bit is 

1 and the second check bit is 0, i.e. probability = 1/2 × 1/2. Therefore, the expectation value can be 

summarized as 

1·(1/2) + 2·(1/2)
2
 + 3·(1/2)

3
 + … = 






1
(1/2)

m

mm  

For any |x| < 1, 





1

2)/(1
m

m xxmx  = (1/2)/(1/2)
2
 = 2. This means that in average 2 nodes are 

checked for an empty query. 

Recall that array A consists of at most v(ℓ)·N nodes. In the buildIndex procedure, the 

amount of work conducted by the user is also O(v(ℓ)·N) for the following reasons: In Step 1, 

for each document, there are at most v(ℓ) keyword sets, and thus N× O(v(ℓ)) is sufficient. In 

Step 2(a), the initialization of v(ℓ)·N nodes requires O(v(ℓ)·N). In Step 2(b), the amount of 

work is O(|P |), where |P | ≤ N×v(ℓ). In Step 2(d), only N nodes are modified. In Steps 2(e) and 

2(f), the number of total external links are bounded by v(ℓ)·N, and thus the amount of work is 

also O(v(ℓ)·N).  

4.3 Security 

Theorem 1: The proposed scheme satisfies non-adaptive indistinguishability security. 
 

(Proof) For the proof, we define a simulator which is a probabilistic polynomial-time 

algorithm. We assume that with the input Tr(H
(q)

), S can generate )( )(qHV
~

 which is 

indistinguishable from V(H
(q)

). We claim that constructing such a simulator is sufficient to 

prove the above theorem. Remind that the proposed scheme is secure in the sense of 

non-adaptive indistinguishability, if for all positive integers q, all (non-uniform) probabilistic 

polynomial-time adversaries A = (A1, A2), all polynomials p, and all sufficiently large k,  

,
)(

1

2

1
state)]),(({0,1}; ;state),,(|Pr[ )(

21

)(

1

)(

0
kp

HVb'bHHbb' q

bR

qq  AA  

where (H0
(q)

, H1
(q)

) are histories over q queries such that Tr(H0
(q)

) = Tr(H1
(q)

), the ‘state’ is a 

polynomially bounded string that captures A1’s state, and the probability is taken over the 

internal coins of A, and the underlying BuildIndex algorithm. 

Assume that if there exists A2 that can find b′ with a probability of significantly greater than 

1/2, then it means that A2 can distinguish V(H0
(q)

) from V(H1
(q)

) with non-negligible probability. 

From the existence of S which can simulate the view from the trace, and the fact of Tr(H0
(q)

) = 

Tr(H1
(q)

), we have S(Tr(H0
(q)

)) = S(Tr(H1
(q)

)). By the definition of S, V(H0
(q)

) is 

indistinguishable from S(Tr(H0
(q)

)), and that V(H1
(q)

) is also indistinguishable from S(Tr(H1
(q)

)). 

Therefore, there are no polynomial time distinguishers that can distinguish V(H0
(q)

) from 

V(H1
(q)

), which is contradictory to the assumption that A2 can find b′ with a probability 

significantly greater than 1/2. This ends the proof. 

To prove the claim, we start with the construction of S(Tr(H
(0)

)). For q = 0, S generates 

),(,),(( 1

(0)

NDidDidV
~

 )),(,),( 1 A
~

DE
~

DE
~

N  such that each id(Di) is copied from )( (0)HTr  

and ||
{0,1})( iD

RiDE
~

  for 1 ≤ i ≤ N. Finally, S constructs A
~

 as follows: S makes A
~

 into an 

array with μ elements, where each element is a random string with the same length as an 

element in A. 



1340                                                                Jho et. al: Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search 

We claim that no probabilistic polynomial-time adversary A can distinguish (0)V
~

 from 

V(H
(0)

) = (id(D1), …, id(DN), E(D1), …, E(DN), A) for any H
(0)

. By a standard hybrid argument, 

if there exists an adversary A that can distinguish (0)V
~

 from V(H
(0)

), then we can easily deduce 

that A can distinguish at least one of the elements of (0)V
~

 from its corresponding element in 

V(H
(0)

). Note that the view of history consists of three types of elements, the document 

identifiers, encrypted documents, and the array A. Since the document identifier in (0)V
~

 is 

exactly the same as that in V(H
(0)

), it is not possible to distinguish the identifiers. From the 

security of the embedded encryption algorithm, a ciphertext E(Di) is indistinguishable from a 

random string )( iDE
~

. Finally, note that each element of array A is also encrypted using a 

semantically secure encryption scheme, and therefore cannot be distinguishable from a 

random string with the same length. 

For q > 0, S constructs ,,,),(,),(( 11

)(

NN

q E
~

E
~

DidDidV
~

 ),,,1 A
~

T
~

T
~

q , such that id(Di) is 

copied from Tr(H
(q)

) and ||
{0,1})( iD

RiDE
~

  for 1 ≤ i ≤ N. Recall that Tr(H
(q)

) = (id(D1), …, 

id(DN), |D1|, …, |DN|, D(s1), …, D(sq), Πq). To build A
~

, S chooses a symmetric key encryption 

algorithm E
~

, random secret key k
~

, and two pseudorandom functions f
~

 and h
~

, randomly. S 

also sets 
021 )()()( DDDDD

~
sss

~
q  , where 

0D
~  is a set of dummy documents to make 

N
~
||D . Assume that 

0D
~  contains no documents matched to any si. S runs Build 

index ),( h
~

,f
~

,k
~

,E
~~

 D  and can obtain an array A
~

. Finally, S generates trapdoors 
iT

~
 as a link for 

the root node of the linked tree T(s1). 

We again claim that no probabilistic polynomial-time adversary A can distinguish )(qV
~

 

from V(H
(q)

) = (id(D1), …, id(DN), E(D1), …, E(DN), T1, …, Tq, A). By a standard hybrid 

argument, if there exists an adversary A that can distinguish )(qV
~

 from V(H
(q)

), then we can 

easily deduce that A can distinguish at least one of the elements of )(qV
~

 from its corresponding 

element in V(H
(q)

). Identifiers and encrypted documents are also indistinguishable by the same 

reason for the case of q = 0. 

Every node in A
~

 is encrypted by a semantically secure encryption algorithm. Therefore, 

from the security of the encryption algorithm, we can deduce that no polynomial-time 

adversary can distinguish these nodes from the nodes in A. For the trapdoor, we should check 

whether the given trapdoor makes correct output. In other words, using the given trapdoor 
iT

~
, 

we must be able to obtain the list of documents D(si). Note that A
~

 is generated from 

021 )()()( DDDDD
~

sss
~

q  . Therefore A
~

 contains a linked tree for D(si) and 
iT

~
 

represents the link to the root node of corresponding linked tree. Thus, we can obtain the same 

results though the regular search process using the given trapdoors. This means that no 

adversary can distinguish A
~

 from A. 

4.4 Comparison 

Previously proposed searchable encryption protocols with a conjunctive keyword search 

mainly utilize public-key cryptosystem based techniques, particularly a bilinear map over 

elliptic curves. Thus, these protocols have different properties and advantages (or 

disadvantages) from those of our scheme. In our construction, we focused on optimizing 

efficiency of searching process. As a result, we provide the first conjunctive keyword search 

method of which the search time is independent from the number of all stored documents. 
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Note that the other protocols require O(N) computation for search. It means that for searching 

only one document millions (or billions) of pairing (or secret sharing) computations are 

required. However, our protocol has a weakness in the storage size (multiplied by v(ℓ) rather 

than ℓ). The value of v(ℓ) is changed by the stored data type. For the data-set in which same 

keywords are frequently repeated (for example zip-code, age, etc.), v(ℓ) has a very small value 

and the weakness can be mitigated.  

We provide a comparison in the table below. In the table, N is the number of all documents, 

ℓ is the maximum number of keywords which is queried conjunctively, v(ℓ) is a constant 

determined by the characteristic of a given data set, m is the number of matched documents, m′ 

is the number of documents which are matched to one of conjunctively queried keywords 

(usually m′ > m), ‘pairing’ means computation of bilinear map over EC, and ‘SD’ means 

computation of symmetric key decryption. 
 

Table 2. Comparison  

 
Encryption 

type 
Index size 

Trapdoor 

size 

Computation Cost for 

Search 

GSW04[10] Public key O(ℓ·N) O(1) (2ℓ+1)·N × (pairing) 

BW07[12] Public key O(ℓ·n·N) O(ℓ) (2ℓ+1)·N × (pairing) 

BKM05[11] 
Pairing Symmetric 

key 

O(ℓ·N)  O(1) 2N × (pairing) 
Secret 

Sharing O(ℓ·N) O(N) N × (secret sharing) 

CJJ13[13] 
Symmetric 

key 
O(ℓ·N) O(m′·ℓ) m′·ℓ × (exponentiation) 

Proposed scheme 
Symmetric 

key 
O(v(ℓ)·N) O(1) )( m × (SD) 

5. Conclusion 

We proposed a new protocol for a conjunctive keyword search on encrypted databases. The 

protocol is based on a linked tree structure instead of public-key cryptosystem based 

techniques, which were usually adopted in previous conjunctive keyword search protocols. 

Since the new protocol utilizes only a symmetric-key cryptosystem, it requires a remarkably 

small computation cost for managing an extremely large database. Moreover, this is the first 

conjunctive keyword search protocol in which the search time is independent of the size of the 

entire database. It was proven to be non-adaptive indistinguishability secure. We expect that 

the proposed scheme can be improved to satisfy the adaptive indistinguishability security with 

the further works. 
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