
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

339

Manuscript received September 5, 2021
Manuscript revised September 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.9.44

A Multi-Indexes Based Technique for Resolving Collision in a Hash
Table

Ahmed Dalhatu Yusuf1, Prof. Saleh Abdullahi2, Prof. Moussa Mahamat Boukar3
and Salisu Ibrahim Yusuf4

 dalhatuahmed@gmail.com, saleh.abdullahi@nileuniversity.edu.ng,
musa.muhammed@nileuniversity.edu.ng, salisu.ibrahim.yusuf@gmail.com

Nile University of Nigeria, Abuja, Nigeria.

Abstract
The rapid development of various applications in networking
system, business, medical, education, and other domains that use
basic data access operations such as insert, edit, delete and search
makes data structure venerable and crucial in providing an
efficient method for day to day operations of those numerous
applications. One of the major problems of those applications is
achieving constant time to search a key from a collection. A
number of different methods which attempt to achieve that have
been discovered by researchers over the years with different
performance behaviors. This work evaluated these methods, and
found out that almost all the existing methods have non-constant
time for adding and searching a key. In this work, we designed a
multi-indexes hashing algorithm that handles a collision in a hash
table T efficiently and achieved constant time O(1) for searching
and adding a key. Our method employed two-level of hashing
which uses pattern extraction h1(key) and h2(key). The second
hash function h2(key) is use for handling collision in T. Here, we
eliminated the wasted slots in the search space T which is another
problem associated with the existing methods.
Key words:
Hashing, hash function, collision resolution method

1. Introduction

Searching is one of the important areas of computer science.
This is due to the number of various storage devices and the
significant increase in the volume of data today from
different sources such as social networks, business
transactions, and many other areas. The main factor that
affects the search process to search and retrieve information
efficiently is the way the data is arranged [4]. Hashing is
one of the efficient data retrieval algorithms for searching
an element from a collection of elements in a hash table T.
Hashing, arrange keys in hash table T using a hash function
h(key) which defines a location to insert the key and the
location to look for a key in T. this is done by mapping an
item into a bucket or slot in a hash table [1, 2, 3] to achieve
constant time O(1) complexity to find and insert an item.
Hash table uses an array to store a collection of items. An i
item is stored in a slot by employing h(key), where h(key) is
a hash function that computes the slot index/location of an

item and maps it into a slot with a constraint that each slot
has (1) item.

Achieving a constant time complexity O(1) is not possible
if various incoming items with the same hash value h(key)
keep coming. In order to reduce collisions, several hashing
collision resolutions techniques exist such as a linear
probing, quadratic probing, double hashing, etc. The
efficient technique reviewed is cuckoo hashing. The
problem with this method are, resizing of T, rehashing all
keys in T this is because of deadlock while looping to add a
key or a new key is introduce and hence the need to be
added into a search space T and wasted slots in T. In this
research work we overcome the drawbacks of the existing
techniques by introducing a multi-indexes hashing. The
detail of our algorithm is explained in section 3.

2. Literature Review

Here, we investigate various method in previous research
work in the field of data structure and other array of
application that are relevant to our work and consider a
methods of achieving the research objectives by providing
a space efficient and fast lookup hashing algorithm which
maintain the good properties of various existing methods
and overcome their drawbacks.

Brief History of Hahing. Hash signifies ”chop and mix,”
which instinctively implies that the hashing function
simply ”chops and mixes” data and generates hash value.
Hashing technique has been well entrenched and recognised
since the early evolution of computing, following the
development of the ”first electronic computer in 1950”. The
concept of the technique was first introduced by Luhn in
1953 [5]. The major goal of hashing is to achieve an even
distribution of keys in a hash table. However, even
distribution without considering the layout of keys is nearly
impossible in computer science for any set of keys.
Therefore, even distribution can only be achieved when the
layout of keys is obtained. This research work provided a
mechanism that enabled even distribution of keys in such a

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

340

way that when the same value is plugged in h(key), a
uniform hash value is obtained.

A Brief History of Hash Function. The use of a hash table
as a storage capacity to store huge information in order to
minimise the storage capacity to store the actual file is
achieved with a hash function [14]. The hash function
works by interpreting all the keys/information to generate a
hash code that serves as an index of a hash table. The hash
function and their related hash tables are utilized in
information capacity and recovery applications to get to the
information in a little and about steady time per recovery,
and capacity space as it were partially more prominent than
the whole space required for the data or records themselves.
Hashing may be a computationally and capacity space
productive frame of information get to which maintains a
strategic distance from the non-linear get to the time of
requested and unordered records and organized trees, and
the frequently exponential capacity necessities of
coordinate get to of state spaces of expansive or variable-
length keys [13].

Linear probing method. This is an open addressing scheme
that resolve collision in a hash table. It uses an array as a
hash table T and use a hash function h(key) mod n to locate
a position to insert or retrieve a key. On inserting a key, it
check slot generated by the h(key) if the slot is already taken
by another key, it search for next empty slot in linear form.
On retrieving a key, it first check the h(key) slot and
examined the other slot(s) after until the key is found or an
empty is encountered. Performance in this scheme is not
efficient because one collision will force other keys to be
hashed to other slot(s) that is not the actual position of a key
which affect the lookup performance [14]. The worse-case
time complexity of this method is O(n).

Quadratic probing method. This scheme also uses h(key)
mod n. On insertion it works similar to linear probing
scheme but find an empty slot to hash the key in quadratic
interval if the h(key) slot is not available for insertion.
During key retrieval it explores the hash table slot in
quadratic interval starting from h(key) slot until an empty
slot is encountered or the search key is found. In this
approach identifying an empty slot is difficult when the
hash table is almost full [15]. Another problem with this
scheme is rehashing and deadlock when an empty slot is not
reached. The problem is resolve by resizing the hash table
and the time complexity here is O(n).

Double hashing method. In this scheme collision is resolved
by employing another hash function. During insertion, if the
h1(key) is not available to accommodate the new key it look
for an empty slot in linear form which is determine by the
value of another hash function h2(key) [16]. On lookup it
uses the h1(key) to retrieve the key and move linearly if the

key is not found using h2(key) until the key is found or
empty slot is encountered.

Separated chaining. In separate chaining method another
data structure is attached to the hash table to store colliding
keys, it usually uses linked list. On inserting a key it uses
h(key) when collision occur it resolve it by creating linked
list and chained it from h(key) slot. During retrieving it
check h.(key), if the key is not found it scan the linked list
part until the key is found the entire node has been checked.
This method have problem of tracing linked list [1]. This
have a “non-constant time complexity” O(n). However, the
work of Dhar et al [12] enhanced the traditional separated
chaining by introducing binary search tree for resolving the
“colliding keys” which provide better lookup performance
of O(log n). The major problem of this method is balancing
skew tree computation.

Coalesced hashing. This scheme uses a combination of open
addressing and separated chaining to resolve collision in a
hash table. On insertion it check h(key) slot if it not
available it explore other slot linearly starting from the
bottom of hash table i.e T[n-1], T[n-2], T[n-3], it will
continue in that fashion until an empty slot is encountered
to insert the colliding key and apply separated chaining
concept to link the colliding keys. This scheme can use any
other probing strategies to find an empty slot [6]. During
retrieval to check h(key) slot if the key does not match, it
use the pointer to access other slot. This approach also have
a problem of other open addressing scheme which force
other keys to be hashed in a slot other than their actual
position in the hash table.

Cuckoo hashing. In this scheme collision is resolved by
relocating a key in a hash table until an empty slot is
encountered to resolve the collision. If an empty slot is not
encountered then, the hash table will be resizing and all the
keys will be rehash into new hash table. This approach uses
two hash functions h1(key) mod n and h2(key/n) mod n and
two hash tables T1 and T2. This technique have amortized
constant time O(1). However, the insertion procedure is not
efficient this is due to multiple relocation and a deadlock
while inserting a key which will cause the entire keys to be
rehashed. The method was introduced by Flemming et al
[7] in 2004 and is used in array of applications [8, 9, 10,11].

3. Design of Multi-Indexes Indexes Hashing

Here, we adopted a model approach in existing hashing
technique work flow that include, creating a hash table,
identifying position to insert a key using hash function
h(key) and subsequently use same h(key) to retrieve a key
and also provide a mechanism for handling collision.
Although, in this work we do it in better and efficient way

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

341

which provide better hashing technique compare to the
previous research works. Our algorithm consists of four
major parts:

1. Hash table which consists of two layers of indexes
and 1 inner layer for colliding keys and a set of
slots that holds keys related to the domain of
application. Given a set of keys where the length
of the highest key < 4 and 2 colliding keys kc and
kd respectively:

Where T is the hash table, L1 is the 1st layer index,
L2 is the 2nd layer index, c is for storing collides
keys, ∂ is distinct part of the colliding keys and L3
is the inner layer index of colliding keys.

2. Slot is a node in T, which act as a container that
store key and a flag that indicates there is collision
at a slot. In this work a slot is created at a time of
inserting a key into a hash table. Each slot has a set
of indexes and when collision occurs it create inner
layer of index to resolve it by creating pool of slots
for storing the colliding keys.

3. Hash function is a function that mapped a key into
a hash table T by determining an address or ith
position to insert key into T in form:

This technique consist of two hash function h1(key)
and h2(key) they both used pattern extracted from
key which is determine by the length of the key
inserting to T. This methods h1(key) and h2(key)

are described in section 3.1 and section 3.2
respectively.

4. Collision resolution is a component that resolve a
problem when more than one key generate same
address with pattern extraction method h(key). For
example, h(key1) and h(key2) both have same
address i.e the same L1 and L2 value. Here, the
problem can be overcome by creating an object in
the class of colliding keys. The name of the object
which we called inner layer will be a concatenation
of L1, L2 and the distinct part of the colliding keys
and subsequently store the key under the object.

5. Lookup is a part that retrieve a key x from the hash
tables T using h(x) or h(x).∂(x) respectively
depending on where the key is found. Where ∂(x)
are characters of x after L2.

3.1 Pattern Extraction Hash Function

Pattern extraction is widely used in many areas such as data
analysis, image processing and recognition, bioinformatics,
character recognition [17]. Patter extraction is the process
of taking out pattern or some character of interest from a
string. These extracted characters can be used to solve many
problems depending on the application. Effort was made in
this work to employ pattern extraction to generate an
address of a key to map into T because it is more suitable to
compute h(key) without using size of the hash table |T|.
Given key X to generate the address or index i. We denote
X1, X2 and X3 as the first, second and third character
respectively in the X key, |X| is the length of X, L1 is the 1st
layer index, L2 is the 2nd layer index and ++ signify
concatenation.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

342

3.1 Second Hash Function

Here, we apply another pattern extraction h2(key) but only
on the distinct part of the colliding keys to regenerate a new

address. We denote ∂ is a distinct part of colliding keys.
Given key1 and key2 a colliding keys. Their new addresses
will be generated as follow:

4. Description of Multi-Indexes Hashing

In view of this research work, we have proposed a new
space efficient buckets hashing algorithm that mapped any
key into hash table and resolve any collision if encountered.
In this section we provide a pseudocode for our Algorithm:

5. Runtime Analysis of Two Layers Indexes
 Hashing

There are many techniques for analyzing an algorithm for
iterative and recursive algorithm in order to find the time
and space complexity such as backward substitution,
recursion tree or masters theorem. However, for an
algorithm that does not have iterative or recursion then it
means there is no dependency of the running time on an
input size. Therefore, the running time of the algorithm is
going to be constant O(1) [4]. In this research we were able
to design an algorithm that does not have iteration and

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

343

recursion. Thus, the time complexity of our algorithm is
constant O(1) which is better than the most efficient existing
technique reviewed in this work that has a time complexity
of amortized constant time Moreover, our algorithm
addressed the problem of resizing of T that required to
rehash all the keys when that happened in cuckoo hashing.
This is achieved, due to the fact that our hash functions does
not depend on the length of keys |Keys| to map into T. Our
algorithm is also space efficient compared to the existing
techniques because it does not create wasted slots in a hash
table.

Below we provided asymptotic analysis of our algorithm
which also indicated our algorithm achieved constant time
complexity O(1).

Insertion runtime analysis

Lookup runtime analysis

6. Discussion

In this section, we compared our method with cuckoo
hashing and this is because literature review has shown
cuckoo hashing is the most efficient existing technique.
The procedure to hash keys with cuckoo hashing is to use
two hash functions, h1(key) mod n or h2(key/n) mod n.
Where n is the length of keys. This approach relocate key to
another location in two hash tables when a slot is not
available for insert a current key. Consider a given 10 set of
keys {3,36,100,105,39,..,key10}to hash. The size of the hash
table will be |T| next prime number of 1.0 * 10 = 11 by rule
of thumb. Therefore, the insertion procedure when collision
occur is described in Fig. 1.

Fig. 1 Insertion procedure for 39

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

344

As it indicated above an n number of relocation occurs to
insert a key which is not efficient. However, when the size
of the hash table increases entire rehashing of keys has been
done this is because the two hash functions employed in
cuckoo hashing depend on the size of the hash table.
Another problem that this method faced is deadlock while
looping to map a new key into T.

Our method resolve the problems associated with cuckoo
hashing. Let consider the following insertion procedure
when collision occur which resulted in number of relocation
of keys in the later technique and see how our method will
handle the insertion efficiently in Fig. 2.

Fig. 2 Insertion procedure for colliding keys

In our technique regardless of the number of colliding keys
only one element will be relocated with h2(key) which will
introduce additional layer for resolving the collision. Unlike
the later technique which required n number of relocation at
worse-case scenario. Another advantage of our technique
over cuckoo hashing is, there is no need to rehash the entire
keys in the hash table to insert a new key. Here, we just
create a slot in the existing hash table T.

6. Conclusion

Here, we were able to design an efficient algorithm, which
addressed the drawbacks of the existing hashing collision
resolution methods. We provided the component of our
algorithm and how it utilized other concept in computer
science, pattern extraction which ultimately helps in
achieving the research objectives. Our method can be
applied in many areas of computing where the existing
hashing techniques were applied to improve performance of
these applications. This is because, this work provided an
efficient memory space and most importantly it provide a
constant time complexity O(1) to retrieve a key from the

hash table our technique have a constant access time O(1).
The analysis done in this work focuses on the worst case
running time (O) of algorithm because if the worst case is
constant knowing the other cases is not important.

References
[1] Brad Miller, David Ranum. Problem Solving with

Algorithms and Data Structures (September 2013)
[2] Michael T. Goodrich, Roberto Tamassia and David M.

Mount. Data Structures and Algorithms in C++ (Second
Edition) 2009

[3] Rance D. Necaise. Data Structures and Algorithms Using
Python. 2011

[4] Narasimha Karumanchi. Data Structures And Algorithms
Made Easy 2017

[5] Hans Peter Luhn. 1953. A new method of recording and
searching information. American Documentation 4, 1
(1953), 14-16

[6] Paul E. Black, ”coalesced chaining”, in Dictionary of
Algorithms and Data Structures [online], Paul E. Black, ed.
12 February 2019. (accessed 09-06-2021) Available from:
https://www.nist.gov/dads/HTML/coalescedChaining.html

[7] Pagh, Rasmus and Flemming Friche (2004). Cuckoo
hashing. ”Journal of Algorithms”

[8] Jane Rubel A. Jeyaraj, Sundarakantham Kambaraj and
Velmurugan Dharmarajan (2018). High-speed data
deduplication using Parallelized Cuckoo Hashing. ”Turkish
Journal of Electrical Engineering & Computer Sciences”.

[9] B. K. Debnath, S. Sengupta, and J. Li (2010). ”Chunkstash:
Speeding up inline storage deduplication using flash
memory”. Proc. USENIX Annual Technical Conference.

[10] A. Kirsch and M. Mitzenmacher, ”The power of one move:
Hashing schemes for hardware” IEEE/ACM Transactions
on Networking, vol. 18, no. 6, pp. 1752?1765, 2010.

[11] Y. Hua, B. Xiao, and X. Liu (2013) ”Nest: Locality-aware
approximate query service for cloud computing”
Proceedings of the 32nd IEEE International Conference on
Computer Communications(INFOCOM), pp. 1327-1335.

[12] Dhar, S., Pandey, K., Premalatha, M., and Suganya, G.
(2017). A tree based approach to improve traditional
collision avoidance mechanisms of hashing. 2017
International Conference on Inventive Computing and
Informatics (ICICI). doi:10.1109/icici.2017.8365368

[13] Arvind K. Sharma ; S.K. Mittal (2019). Cryptography &
Network Security Hash Function Applications, Attacks and
Advances: A Review. 2019 Third International Conference
on Inventive Systems and Control (ICISC).

[14] Knuth, Donald E. (2000). Sorting and searching (2. ed., 6.
printing, newly updated and rev. ed.). Boston [u.a.]:
Addison-Wesley. p. 514. ISBN 978-0-201-89685- 5.

[15] Weiss, Mark Allen (2009). Data Structures and Algorithm
Analysis in C++. Pearson Education. ISBN 978-81-317-
1474-4.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

345

[16] Phillip G.Bradford and Michael N. Katehakis (April
2007), ”A Probabilistic Study on Combinatorial Expanders
and Hashing”, SIAM Journal on Computing, 37 (1): 83-111,
doi:10.1137/S009753970444630X

[17] Xuewen Wang, Xiaoqing Ding and Changsong Liu
(2001). ”Character extraction and recognition in natural scene
images”, Sixth International Conference on Document
Analysis and Recognition.

