• Title/Summary/Keyword: Seabed Soil

Search Result 103, Processing Time 0.041 seconds

Significance of seabed interaction on fatigue assessment of steel catenary risers in the touchdown zone

  • Elosta, Hany;Huang, Shan;Incecik, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.403-423
    • /
    • 2016
  • The challenges involved with fatigue damage assessment of steel catenary riser (SCR) in the touchdown zone (TDZ) are primarily due to the non-linear behaviour of the SCR-seabed interaction, considerable uncertainty in SCR-seabed interaction modelling and geotechnical parameters. The issue of fatigue damage induced by the cyclic movements of the SCR with the seabed has acquired prominence with the touch down point (TDP) interaction in the TDZ. Therefore, the SCR-seabed response is critical for reliable estimation of fatigue life in the TDZ. Various design approaches pertaining to the lateral pipe-soil resistance model are discussed. These techniques have been applied in the finite element model that can be used to analyse the lateral SCR-seabed interaction under hydrodynamic loading. This study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. In this study, global analyses are performed to assess the influence of vertical linear seabed springs, the lateral seabed model and the non-linear seabed model, including trench evolution into seabed, seabed normalised stiffness, re-penetration offset parameter and soil suction resistance ratio, on the fatigue life of SCRs in the TDZ.

Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

  • Shen, Jianhua;Wu, Huaicheng;Zhang, Yuting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.418-428
    • /
    • 2017
  • In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII) is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

Effects of Seabed Soil Parameters on Wave Dispersion Relationship (해저지반의 지반상수가 분산관계식에 미치는 영향)

  • Yang, Soonbo;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.258-259
    • /
    • 2014
  • It is needed the introduction of a new wave dispersion relationship considering the condition of seabed to examine closely the interaction between wave and seabed. In this study, a wave dispersion relationship is newly developed considering the condition of seabed such as permeability and displacement. Wave damping rates are compared and analysed according to the various soil parameters such as seabed soil thickness, elastic modulus, saturation, permeability, and porosity.

  • PDF

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Numerical Analysis on Velocity Fields around Seabed Tiller for the Improvement of Seabed Soil (해저 토질 개선을 위한 해저경운기 주변의 속도장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung;Kim, Jong-Beom;Chung, Sang-Ok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.48-56
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the velocity fields around the seabed tiller used for the improvement of the seabed soil and the pulling force and buoyancy generated by driving the seabed tiller. The turbulence model used in this study is a realizable $k-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, a typical vortex pair appears near the adjacent rotor vane tip. When the current is stopped, there is no force when pulling the seabed tiller, but when the current flows at 1.2 knots, the force acts on the downstream side and the pulling force is much greater. In stationary currents, the buoyancy of the seabed tiller acts more strongly towards the seabed as the number of rotations of the rotor increases, but acts more strongly toward the sea surface at 1.2 knots of current.

Effects of Dynamic Soil Behaviour on Wave-Induced Seabed Response

  • Cha, D.H;Jeng, D.S;Rahman, M.S.;Sekiguchi, H.;Zen, K.;Yamazaki, H.
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.21-33
    • /
    • 2002
  • In this paper, an analytical solution for the wave-induced seabed response in a porous seabed is derived. Unlike previous investigations with quasi-static soil behaviour, dynamic soil behaviour is considered in the new solution. The basic one-dimensional framework proposed by Zienkiewicz et al (1980) is extended to two-dimensional cases. Based on the analytical solution derived, the effects of dynamic soil behaviour on the wave-induced seabed response are examined. The boundary of quasi-static soil behaviour and dynamic soil behaviour is clarified, and formulated for engineering practice.

Effects of Dynamic Soil Behaviour on Wave-Induced Seabed Response

  • Cha, D.H.;Jeng, D.S.;Rahman, M.S.;Sekiguchi, H.;Zen, K.;Yamazaki, H.
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, an analytical solution for the wave-induced seabed response in a porous seabed is derived. Unlike previous investigations with quasi-static soil behaviour, dynamic soil behaviour is considered in the new solution. The basic one-dimensional framework proposed by Zienkiewicz et al (1980) is extended to two-dimensional cases. Based on the analytical solution derived, the effects of dynamic soil behaviour on the wave-induced seabed response are examined. The boundary of quasi-static soil behaviour and dynamic soil behaviour is clarified, and formulated for engineering practice.

  • PDF

Motion of a Cylindrical Object due to Seabed Soil Friction (해저면 토양마찰력에 의한 원통형 물체의 운동)

  • 최경식;강신영;곽한우
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • The motion of a cylindrical object resting on shallow seabed due to wave forces and soil friction is studied. Given environmental conditions such as wave characteristics and seabed soil properties, the equations of motion are derived and the corresponding reponses of the cylinder in two dimensional plane, i.e., translational and rotational displacements, accelerations, are calculated. The motion is substantially restrained by the penetration of a cylinder into seabed and the parametric study focuses on finding out a minimum penetration depth which makes the cylinder motionless.

  • PDF

Wave-Induced Soil Response around Submarine Pipeline (파랑작용에 의한 해저파이프라인 주변지반의 응답특성)

  • Hur, Dong-Soo;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.31-39
    • /
    • 2007
  • Recently, the nonlinear dynamic responses among waves, submarine pipeline and seabed have become a target of analyses for marine geotechnical and coastal engineers. Specifically, the velocity field around the submarine pipeline and the wave-induced responses of soil, such as stress and strain inside seabed, have been recognized as dominant factors in discussing the stability of submarine pipeline. The aim of this paper is to investigate nonlinear dynamic responses of soil in seabed, around submarine pipeline, under wave loading. In order to examine wave-induced soil responses, first, the calculation is conducted in the whole domain, including wave field and the seabed, using the VOF-FDM method. Then, velocities and pressures, which are obtained on the boundary between the wave field and the seabed, are used as the boundary condition to compute the wave-induced stress and strain inside seabed, using the poro-elastic FEM model, which is based on the approximation of the Biot's equations. Based on the numerical results, the characteristics of wave-induced soil responses around submarine pipeline are investigated, in detail, inrelation to relative separate distance of the submarine pipeline from seabed. Also, the velocity field around the submarine pipeline is discussed.

Interactions of Wave and Poro-elastic Seabed under Uniform Current (일정 흐름장에서의 파랑과 다공질 탄성 해저지반의 상호작용)

  • Kim Beom-yeong;Lee Gil-Seong;Park U-Seon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.45-52
    • /
    • 1997
  • Ocean seabed is usually covered with various types of marine soils. A marine soil is a mixture of two phases: soil particles that forms an interlocking skeletal frame, pore fluids that occupy a major portion of pore space. When gravity water waves propagate over a porous movable seabed, a hydrodynamic pressure on the fluid-seabed interface and fluid flow in the porous medium are induced. (omitted)

  • PDF