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Interactions of Wave and Poro-elastic Seabed under Uniform Current
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1. Introduction

Ocean seabed is usually covered with various types of marine soils. A marine soil is a
mixture of two phases: soil particles that forms an interlocking skeletal frame, pore fluids that
occupy a major portion of pore space.

When gravity water waves propagate over a porous movable seabed, a hydrodynamic
pressure on the fluid-seabed interface and fluid flow in the porous medium are induced. Then
the pore fluid transmits a force to the skeletal frame in the form of effective stresses, and
wave-induced effective stresses cause deformation of the porous medium. The hydrodynamic
pressure at the surface of the porous seabed induces elastic waves - compressional waves
and shear wave - in the porous seabed, which physically mean a flow within the seabed and
a dynamic deformation of soil skeletal frame. During this process, water wave energy may
be dissipated by several damping mechanisms such as bottom friction, viscous friction of fluid
(percolation), Coulomb friction between soil particles (Yamamoto, 1983). The wave length of
water waves is also modified by the seabed response resulted from wave actions. Thus, the
problem of wave-seabed interaction may be considered as a problem of forced vibration by
water waves of a poro-elastic bed. Therefore, the boundary value problem should be treated
as the coupled problem of water waves and elastic waves in the seabed.

The linear wave theory is considered to model wave motions in the fluid region, and the
behaviors of skeletal frame of soil and pore fluid in the seabed are based on the linear theory
of elastic wave propagation in porous medium by Biot (1962). Yamamoto et al. (1978) and
Madsen (1978) obtained analytically the behaviors of the unbounded porous medium by water
waves using Biot’s theory (1962).

In the present study, an implicit closed form solution for the interaction problem of water
wave and poro-elastic seabed under uniform current has been obtained. Without current
effects, the derived solution reduces to the analytic solution of Yamamoto (1983). The
influences on wave-seabed interaction according to the seabed conditions and current
variations are also fnvestigated.

2. Gravity water waves on the porous seabed

A regular wave train of amplitude, H/2, and angular frequency, w, propagating on the
porous seabed of constant water depth, %, under uniform current is considered to formulate
the interaction problem of waves and the seabed as shown on Fig. 1. A Cartesian coordinate
system (x,z) with x measured in the direction of wave propagation, and z vertically
upwards from the stillwater level is adopted.

Assuming time-harmonic motion of fluid particles, the free surface fluctuation, #, can be
expressed as
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The fluid is assumed to be incompressible,
and the flow . is irrotational. The fluid
motion, therefore, can be described by a
velocity potential, @(x, z;¢), which satisfies
the Laplace equation

Fig. 1 Definition sketch viQ(x,z;t) = 0 (2)

Using a small amplitude wave theory, the dynamic and kinematic free surface boundary
conditions under uniform current, U,, may be linearized as (Dean and Darlymple, 1984)
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in which g = gravitational acceleration.
At the bed surface, the vertical velocity of the fluid particle should be equal to that of the
pore water.
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in which, %, = vertical displacement of the soil at the seabed; w, = relative vertical pore fluid
displacement.

Using separation of variables, the general solution of velocity potential, @, which satisfies the
Laplace equation (2) and the boundary conditions (3) and (4), can be obtained as
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where, the complex-valued wave number, k£, which is modified by the seabed response, is to be
determined from the following dispersion relation obtained from the boundary condition (5).
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in which, .U, = complex-valued amplitude for vertical displacement of soil skeletal frame;, W, =
complex-valued amplitude for relative vertical displacement of pore fluid.

3. Seabed response to water waves

Biot (1962) presented the linear theory on the elastic waves propagating in fluid-filled
poro-elastic media. Combining the stress~strain relations with Darcy’s law and stress equilibrium
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equation, the equations of motion for soil skeletal frame and pore fluid are governed by
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in which H, M, C = Biot's elastic modulus; # = displacement vector of soil skeletal frame of
which components are #, and u,; w = relative displacement vector of pore fluid of which
components are w, and w,; € = strain of soil skeletal frame; ¢ = volumetric strain of pore
fluidi G = shear modulus of the soil; o = total density of the soil; g, = density of pore fluid;
m = virtual mass of skeletal frame in accelerated flow field;, », = viscosity of the pore fluid
(kg/m-s); and kb, =xu,/psg, x= permeability of the soil ( m/sec)

There are two solutions for Biot’s equations (8) and (9), which are for motion of an
fluid-filled homogeneous, isotropic, and elastic medium (Prakash et al., 1981). One solution
describes the propagation of an irrotational wave (compressional wave, dilatational wave), while
the other describes the propagation of a wave of pure rotation (shear wave, equivoluminal wave).

Introducing displacement potentials ¢% and ¢% for compressional waves, and ¢* and ¢V
for shear wave, the displacement of soil skeletal frame, %, and the relative displacement of pore

fluid, w, in the x- and z-directions, respectively, can be written in terms of four potential
functions (Yamamoto, 1983).
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in which v(+) = a(-)/dxi+d(-)/dz% and 6(-) =2a(-)dz7i—a(-) oxk.
Since waves motion is harmonic as given in Eq.(1), the displacement potentials, ¢%, ¢~ ,

@Y and ¢; are assumed to be harmonic in both time and x -direction.
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Substitution of the potential functions Egs. (12) and (13) for compressional waves and Egs.
(14) and (15) for shear wave into the goveming Eqs. (8 and (9) lead to the ordinary

differential equations for ¥%(2), ¥r(z), ¥i(z) and ¥7(2).
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We have obtained the general solutions: @ given by equation (6) for the fluid motion on the
porous seabed ( —A <2< 0); ¢%, ¢ given by Egs. (24), (25) for the motion of the seabed
{(z<¢ — k) associated with the compressional waves; and - @, , ¢r given by Egs. (26), (27) for

the motion of the seabed ( 2z { — %) associated with the shear wave.
The boundary conditions for the seabed at the bed surface are that the vertical effective stress,
o, , is zero, that the shear stress, r,;, is zero, and that the wave induced hydrodynamic pressure,

p ( p> 0 for compression), is transmitted continuously from the sea to the pores in the seabed;

o =g, +p=0 at z = —h @1)
Tee = 0 3 at 2z = —h (32)
Diinvey = —p,«—a-(tz at z = —h (33)

The general solutions obtained contain four unknown complex constants £k, a;, a3, a3,

which can be determined from the boundary conditions (5) and (31) ~ (32) at the sea-seabed
interface. Using four boundary conditions, the four simultaneous equations are constituted as
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Four unknown complex constants k, a;, @3, @3 can be determined from Eq. (34) by iteration
method such as Newton’s method. The components of total stress and pore pressure can be
obtained as
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in which 2= K —2% (n=1,2,3).
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in which, D is the differential operator, D( - ) = d( - )/dz.
From this ordinary differential equations, four characteristics roots, ©A; and =*A,, for

compressional waves and, two characteristics roots, £43, for shear wave, which are representing
vertical decaying parameter of elastic waves, can be obtainéd, i.e.

A, = k(1 — &) n=123 (18)

The parameter &, are the Mach numbers which are the ratios of the phase velocity, w/k, of

the gravity water waves and the propagation velocities, V,, of the three kinds of elastic waves
in an unbounded porous medium,

6= 2k =103 (19
n
The propagation speeds of the two compressional waves in unbounded media are given by
— 2HM = %) e
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and the propagation velocity of the shear wave is given as
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Since elastic waves propagate downward and decay from the sea-seabed interface in a
semi-infinite half space, the general solutions of the displacement potentials ¢ and ¢~ for the
compressional waves and ¢; and @; for shear wave in the seabed can be expressed as by the
linear summation of the fundamental solutions exp [A;z], exp[A;2] and exp[A;2].

¢,cl _ [aled,(z+h) + aze,{z(z+h)]e,‘(k,_m) (24)
Py = [ble/h(z+h) + bzeﬂz(1+h)]ei(kx—wt) (25)
¢;4 — a3e33(2+h) ei(lcx—wt) (26)
Gy = byt tP gilhi-an @

The coefficients @, and b, are not independent. The dependence can be determined by
substitution of Egs. (24)~(27) into the governing Egs. (8) and (9).

bn= Cn® Qy n=1,2,3 (28)
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4. Interaction analysis and Discussion

To investigate the effect of wave-seabed interaction using the analytical solution derived in
this present study, the analyses for the case that water waves with T=15s and H°=5m

propagate on the unbounded sand bed and soft clay bed of water depth A=50 m, A=5 m are
carried out, respectively.

Pore pressure at the sea bed and the wave number modified by the seabed response
according to the seabed conditions and current variations are summarized in Table 1. It can be
concluded that the wave.length, L, of water wave over the soft clay bed is shortened compared
to the wave length, L,, of water wave over a rigid bed. The bottom pressure, pp at the

surface of the soft clay bed is larger than that of the sand bed. Especially, the influence of
seabed response is increased when the water wave and uniform current have the same
progressive direction. This phenomenon was more remarkable for intermediate depth condition (50
m) than shallow water depth condition(5 m).

The vertical distributions of max. pore pressure and shear stresses are shown on Fig. 2~5.
For intermediate water depth condition, the seabed responses are sensitive to the seabed
condition. However, the seabed responses are not sensitive to the seabed condition for shallow
water depth. It might be caused that the vertical movement of water particles in shallow water
condition is relatively smaller than that of water particles in intermediate water depth.

Table 1 Variation of wave numbers and maximum pore water pressures at seabed wurt
different current conditions

h U HIHO Rigid bed Sand bed Clay bed R .
emarks
(m) | (m) ps/ onO kK | psl onO kK PB/WOHOI kB
-2 | 1.228 0.281 1.179 0.282 1.179 0312 1.236
T=15s

-1 | 1.098 0.284 1.079 0.294 1.080 0.336 1.153 0
50 0 | 1000 0.304 1.000 0.305 1.001 0.359 1002 | A= 5m

1 10923 | 0313 0.935 0.313 0.936 0.383 1.046 0=0.022245 m !
2 | 0859 0.320 0.879 0.321 0.881 0.409 1.012

-1 | 1186 0.487 1177 | 0.487 1178 | 0487 1210 | T =15 s
1.000 | 0.490 1.000 | 0.490 1.001 0.492 1039 | o 5
0.868 | 0492 0871 0492 | 0872 | 0498 | 0916
0.768 0.493 0772 | 0494 | 0773 | 0506 | 0823 |4)=0.060747 m~!

N = O

5. Conclusions

In this study, an analytical solution for interactions of poroelastic seabed to water waves
under uniform current has been obtained. The wave induced seabed responses according to the
seabed condition and current variations are investigated using analytical solution developed in the
present study. The responses in the clay bed are large considerably and transferred into the
seabed deeply compared to those of the sand bed. The wavelength of the water waves over the
soft clay bed is considerably shorter and the pore pressure at the surface of seabed is greater
than those of the water wave over the sand bed. For following current conditions, larger pore
pressure is induced and the seabed response is more amplified as the current speed increases.
This phenomenon was more remarkable for intermediate water depth condition than shallow
water depth.
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Fig. 2 Distributions of wave~induced pore water pressures and shear stresses in sand bed

intermediate water depth condition( 2= 50 m)
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Fig. 3 Distributions of wave-induced pore water pressures and shear stresses in clay bed under

intermediate water depth condition( #= 50 m)
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Fig. 4 Distributions of wave-induced pore water pressures and shear stresses in sand bed under
shallow water depth condition( 2= 5m)
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Fig. 5 Distributions of wave-induced pore water pressures and shear stresses in clay bed under
shallow water depth condition( 2= 5m)
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