• Title/Summary/Keyword: Sea Weather

Search Result 554, Processing Time 0.022 seconds

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.

The Analysis on the Determinants of Shipping Lines's entering the Arctic Sea Route (외항선사의 북극해항로 진출에 관한 결정요인 분석)

  • Son, Kyong-Ryong
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.4
    • /
    • pp.1-16
    • /
    • 2019
  • The purpose of this study is to Analyze the problems that container shipping companies exist through the commercialization of container shipping for Non-Arctic countries and the opportunity factors for the transport of the Arctic shipping to improve cooperation cross-border relation Arctic policy and the use of transport. In order to design a hierarchy analysis method study model, four high and 17 low factors were extracted by designing a hierarchy analysis method study model based on results by prior study and in-depth interview. The first of the higher factors is the internal strength of assessing the value of the Arctic, the will and capabilities of the shipping companies in creating new markets with the vision and goals of the shipping companies. Second, the internal constraints associated with the shipping companies advance to the NSR mean the negative factors for the entry into the NSR and the internal weaknesses that cause the shipping companies capacity limitations. Third, the economic benefits from the use of NSR are external factor for shipping companies in cooperation with the future economic value of the Arctic and with respect to Arctic sea and Arctic advance and development from Arctic coastal countries. Finally, external pre-emptive tasks means to respond to use NSR by external restrictions on transport to prepare the possibility of severe weather conditions, the customs policy change of coastal countries.

Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining (바다모래 채취 시 해수 수질 및 생태계 영향에 대한 해양환경조사 개선 방안)

  • Kim, Yeong-Tae;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Kim, In-Chul;Choi, Bo-Ram;Kim, Hee-Jung;Kim, Jin-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.143-156
    • /
    • 2014
  • We reviewed investigation status on turbidity plume in the statement of marine environmental survey(2008 to 2012) associated with marine sand extraction projects. The survey statement from seven marine sand extraction sites (extraction area of Southern EEZ, extraction area of Western EEZ, relocation zone in the Western EEZ, sea area under jurisdiction of Taean-gun, sea area under jurisdiction of Ansan City, and two discrete sea areas under jurisdiction of Ongjin-gun) in the nearshore and offshore of Korea showed that in situ observations were carried out for the dispersion and transport of suspended sediments on two areas (One is a extraction area in the EEZs, the other is an area of coastal sites). However, sampling station and range have not been selected considering physical, geographical factors (tide, wave, stratification, water depth, etc.) and weather conditions (wind direction and velocity, fetch, duration, etc). Especially turbidity plumes originating from three sources, which include suspended sediments in overflow(or overspill) discharged from spillways and reject chutes of dredging vessel, and resuspended sediments from draghead at the seabed, may be transported to a far greater distance outside the boundary of the extraction site and have undesirable impacts on the marine environment and ecosystem. We address that behaviour of environmental pollutants such as suspended solids, nutrients, and metals should be extensively monitored and diagnosed during the dispersion and transport of the plume. Finally we suggest the necessity to supplement the current system of the sea area utilization consultation and establish the combined guidelines on marine sand extraction to collect basic data, to monitor cumulative effects, and to minimize environmental damages incurred by the aftermath of sand extraction.

Cold Cloud Genesis and Microphysical Dynamics in the Yellow Sea using WRF-Chem Model: A Case Study of the July 15, 2017 Event (WRF-Chem 모델을 활용하여 장마 기간 황해에서 발달하는 한랭운과 에어로졸 미세물리 과정 분석: 2017년 7월 15일 사례)

  • Beom-Jung Lee;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.578-593
    • /
    • 2023
  • Intense convective activity and heavy precipitation inundated Seoul and its metropolitan area on July 15, 2017. This study investigated the synoptic-scale meteorological drivers of cold cloud genesis of this event. The WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) model was employed to explore the intricate interplay between meteorological factors and the indirect effects of PM2.5 aerosols originating from eastern China. The PM2.5 aerosols' indirect effect was quantified by contrasting outcomes between the comprehensive Aerosol Radiation Interaction experiment (encompassing aerosol radiation feedback, cloud chemistry processes, and wet scavenging in the WRF-Chem model) and ACR (Aerosol Cloud Radiation interaction) experiment. The ACR experiment specifically excluded aerosol radiation feedback while incorporating only cloud chemistry processes and wet scavenging. Results indicated that in the early hours of July 15, 2017, a convergence of warm, moisture-laden airflow originating from southeast China and the East China Sea unfolded over the Yellow Sea. This convergence was driven by the juxtaposition of a low-pressure system over the Chinese mainland and Northwest Pacific high. Notably, at approximately 12 km altitude, the resultant convective clouds were characterized by the presence of ice crystals, a hallmark of continental-origin cold clouds. The WRF-Chem model simulations elucidated the role of PM2.5 aerosols from eastern China, attributing 5.7, 10.4, and 10.8% to cloud water, ice crystal column, and liquid water column formation, respectively, within the developing cold clouds. Thus, this study presented a meteorological mechanism elucidating the formation of deep convective clouds over the Yellow Sea and the indirect effects of PM2.5 aerosols originating from eastern China.

Classification of Cultivation Region for Soybean (Glycine max [L.]) in South Korea Based on 30 Years of Weather Indices (평년기상을 활용한 우리나라의 콩 재배지역 구분)

  • Dong-Kyung Yoon;Jaesung Park;Jinhee Seo;Okjae Won;Man-Soo Choi;Hyeon Su Lee;Chaewon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • A region can be divided into cultivation zones based on homogeneity in weather variables that have the greatest influence on crop growth and yield. This study classified the cultivation zone of soybean using weather indices as a prior study to classify the agroclimatic zone of soybean. Meteorological factors affecting soybeans were determined through correlation analysis over a 10 year period (from 2013 to 2022) using data from the Miryang and Suwon regions collected from the soybean yield trial database of the Rural Development Administration, Korea and the meteorological database of the Korea Meteorological Administration. The correlation between growth characteristics and the minimum temperature, daily temperature range, and precipitation were high during the vegetative growth stages. Moreover, the correlation between yield components and the maximum temperature, daily temperature range, and precipitation were high during the reproductive growth stages. As a result of k-means clustering, soybean cultivation zones were divided into three zones. Zone 1 was the central inland region and southern Gyeonggi-do; Zone 2 was the southern part of the west coast, the southern part of the east coast, and the South Sea; and Zone 3 included parts of eastern Gyeonggi-do, Gangwon-do, and areas with high altitudes. Zone 1, which has a wide latitude range, was further subdivided into three cultivation zones. The results of this study may provide useful information for estimating agrometeorological characteristics and predicting the success of soybean cultivation in South Korea.

Review on the impact of Arctic Amplification on winter cold surges over east Asia (북극 온난화 증폭이 겨울철 동아시아 한파 발생에 미치는 영향 고찰)

  • Seong-Joong Kim;Jeong-Hun Kim;Sang-Yoon Jun;Maeng-Ki Kim;Solji Lee
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.1-23
    • /
    • 2021
  • In response to the increase in atmospheric carbon dioxide and greenhouse gases, the global mean temperature is rising rapidly. In particular, the warming of the Arctic is two to three times faster than the rest. Associated with the rapid Arctic warming, the sea ice shows decreasing trends in all seasons. The faster Arctic warming is due to ice-albedo feedback by the presence of snow and ice in polar regions, which have higher reflectivity than the ocean, the bare land, or vegetation, higher long-wave heat loss to space than lower latitudes by lower surface temperature in the Arctic than lower latitudes, different stability of atmosphere between the Arctic and lower latitudes, where low stability leads to larger heat losses to atmosphere from surface by larger latent heat fluxes than the Arctic, where high stability, especially in winter, prohibits losing heat to atmosphere, increase in clouds and water vapor in the Arctic atmosphere that subsequently act as green house gases, and finally due to the increase in sensible heat fluxes from low latitudes to the Arctic via lower troposphere. In contrast to the rapid Arctic warming, in midlatitudes, especially in eastern Asia and eastern North America, cold air outbreaks occur more frequently and last longer in recent decades. Two pathways have been suggested to link the Arctic warming to cold air outbreaks over midlatitudes. The first is through troposphere in synoptic-scales by enhancing the Siberian high via a development of Rossby wave trains initiated from the Arctic, especially the Barents-Kara Seas. The second is via stratosphere by activating planetary waves to stratosphere and beyond, that leads to warming in the Arctic stratosphere and increase in geopotential height that subsequently weakens the polar vortex and results in cold air outbreaks in midlatitudes for several months. There exists lags between the Arctic warming and cold events in midlatitudes. Thus, understanding chain reactions from the Arctic warming to midlatitude cooling could help improve a predictability of seasonal winter weather in midlatitudes. This study reviews the results on the Arctic warming and its connection to midlatitudes and examines the trends in surface temperature and the Arctic sea ice.

Accuracy Evaluation of Daily-gridded ASCAT Satellite Data Around the Korean Peninsula (한반도 주변 해역에서의 ASCAT 해상풍 격자 자료의 정확성 평가)

  • Park, Jinku;Kim, Dae-Won;Jo, Young-Heon;Kim, Deoksu
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.213-225
    • /
    • 2018
  • In order to access the accuracy of the gridded daily Advanced Scatterometer (hereafter DASCAT) ocean surface wind data in the surrounding of Korea, the DASCAT was compared with the wind data from buoys. In addition, the reanalysis data for wind at 10 m provided by European Centre for Medium-Range Weather Forecasts (ECMWF, hereafter ECMWF), National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR, hereafter NCEP), Modern Era Retrospective-analysis for Research and Applications-2 (MERRA-2, hereafter MERRA) were compared and analyzed. As a result, the RMSE of DASCAT for the actual wind speed is about 3 m/s. The zonal components of wind of buoys and the DASCAT have strong correlation more than 0.8 and the meridional components of wind them have lower correlation than that of zonal wind and are the lowest in the Yellow Sea (r=0.7). When the actual wind speed is below 10 m/s, the EMCWF has the highest accuracy, followed by DASCAT, MERRA, and NCEP. However, under the wind speed more than 10 m/s, DASCAT shows the highest accuracy. In the nature of error according to the wind direction, when the zonal wind is strong, all dataset has the error of more than $70^{\circ}$ on the average. On the other hand, the RMSE of wind direction was recorded $50^{\circ}$ under the strong meridional winds. ECMWF shows the highest accuracy in these results. The RMSE of the wind speed according to the wind direction varied depending on the actual wind direction. Especially, MERRA has the highest RMSE under the westerly and southerly wind condition, while the NCEP has the highest RMSE under the easterly and northerly wind condition.

A Study on Scenario to establish Coastal Inundation Prediction Map due to Storm Surge (폭풍해일에 의한 해안침수예상도 작성 시나리오 연구)

  • Moon, Seung-Rok;Kang, Tae-Soon;Nam, Soo-Yong;Hwang, Joon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.492-501
    • /
    • 2007
  • Coastal disasters have become one of the most important issues in every coastal country. In Korea, coastal disasters such as storm surge, sea level rise and extreme weather have placed many coastal regions in danger of being exposed or damaged during subsequent storms and gradual shoreline retreat. A storm surge is an onshore gush of water associated with a tow pressure weather system, typically in typhoon season. However, it is very difficult to predict storm surge height and inundation due to the irregularity of the course and intensity of a typhoon. To provide a new scheme of typhoon damage prediction model, the scenario which changes the central pressure, the maximum wind radius, the track and the proceeding speed by corresponding previous typhoon database, was composed. The virtual typhoon scenario database was constructed with individual scenario simulation and evaluation, in which it extracted the result from the scenario database of information of the hereafter typhoon and information due to climate change. This virtual typhoon scenario database will apply damage prediction information about a typhoon. This study performed construction and analysis of the simulation system with the storm surge/coastal inundation model at Masan coastal areas, and applied method for predicting using the scenario of the storm surge.

Agro-Climatic Indices Changes over the Korean Peninsula in CO2 Doubled Climate Induced by Atmosphere-Ocean-Land-Ice Coupled General Circulation Model (대기-해양-지면-해빙 접합 대순환 모형으로 모의된 이산화탄소 배증시 한반도 농업기후지수 변화 분석)

  • Ahn, Joong-Bae;Hong, Ja-Young;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • According to IPCC 4th Assessment Report, concentration of carbon dioxide has been increasing by 30% since Industrial Revolution. Most of IPCC $CO_2$ emission scenarios estimate that the concentration will reach up to double of its present level within 100-year if the current tendency continues. The global warming has resulted in the agro-climate change over the Korean Peninsula as well. Accordingly, it is necessary to understand the future agro-climate induced by the increase of greenhouse gases in terms of the agro-climatic indices in the Korean peninsula. In this study, the future climate is simulated by an atmosphere/ocean/land surface/sea ice coupled general circulation climate model, Pusan National University Coupled General Circulation Model(hereafter, PNU CGCM), and by a regional weather prediction model, Weather Research and Forecasting Model(hereafter, WRF) for the purpose of a dynamical downscaling. The changes of the vegetable period and the crop growth period, defined as the total number of days of a year exceeding daily mean temperature of 5 and 10, respectively, have been analyzed. Our results estimate that the beginning date of vegetable and crop growth periods get earlier by 3.7 and 17 days, respectively, in spring under the $CO_2$-doubled climate. In most of the Korean peninsula, the predicted frost days in spring decrease by 10 days. Climatic production index (CPI), which closely represent the productivity of rice, tends to increase in the double $CO_2$ climate. Thus, it is suggested that the future $CO_2$ doubled climate might be favorable for crops due to the decrease of frost days in spring, and increased temperature and insolation during the heading date as we expect from the increased CPI.

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.