• Title/Summary/Keyword: Sea Launch

Search Result 67, Processing Time 0.023 seconds

Preliminary EMC Analysis between the COMS and the GEO Launch Vehicles (통신해양기상위성과 정지궤도 발사체와의 전자파 적합성 해석)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.439-445
    • /
    • 2008
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and Geostationary Earth Orbit (GEO) launch vehicles in the frequency range [1MHz-47MHz] is described. The considered launch vehicles are arian V, sea Launch, land Launch, atlas III&V, delta IV, proton M/breeze M, soyuz, HII-A and Angara. The launch vehicle Radiated Emission (RE) specifications have been compared to COMS satellite Radiated Susceptibility (RS) limits. The COMS RS limits are the RS qualification levels of COMS units during launch. As a result, The radiated emission levels of arian V, sea launch, atlas III&V, delta IV, proton M/breeze M, HII-A and angara are compliant with COMS RS limits. The negative margins appear between land launch or soyuz launch vehicle RE and COMS RS. Then, if the land launch or soyuz is chosen by the customer, The tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles specifications.

The Preliminary EMC Analysis Between the COMS RE and the GEO Launch Vehicles RS (통신해양기상위성 복사방출과 정지궤도 발사체 복사감응과의 전자파 적합성 해석)

  • Kim, Eui-Chan;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.774-778
    • /
    • 2010
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and the Geostationary Earth Orbit (GEO) launch vehicles in the frequency range is described. The considered launch vehicles are Arian Ⅴ, Sea Launch, Land Launch, Atlas III&Ⅴ, Delta IV, Proton M/breeze M, Soyuz, H II-Aa. The launch vehicle Radiated Susceptibility (RS) specifications have been compared to COMS satellite Radiated Emission (RE) limits. The COMS Radiated Emission (RE) level is determined by calculating the radiated field equal to the quadratic sum of radiated emissions of each equipment switched "ON" during launch. As a result, The RS requirements of Arian V, Atlas III&V and Delta IV lauchers are compliant with COMS RE limits. The negative margins appear between the others launch vehicle RS (Sea Launch, Land Launch, Proton M/Breeze M, Soyuz and H II-A) and COMS RE. Then, if the launchers that have negative margin were chosen by the customer, The EMC tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles requirements.

Geostationary Satellite Launch Site and Orbit Injection (정지궤도위성 발사위치와 궤도투입에 관한 고찰)

  • DONG-SUN KIM
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • According to the success of the Nuri Space Launch Vehicle (KSLV-II) and the development goal of the next generation space launch vehicle (KSLV-III), it is expected that the domestic geostationary satellite capability will be increased from (1 to 3.7) ton. Also, it is predicted that substantial ability of about 1 ton can be provided for the space exploration of the Moon, Mars, asteroids, etc. The Goheung space launch site is optimized for sun-synchronous small satellites, and due to the essential precondition that the launch trajectory does not impinge another country's sovereign airspace, it is not satisfactory as a geostationary satellite launching site. Its latitude also requires more energy to shape the rotating orbital plane from the initial injection status. This results in a decreasing factor of economic feasibility, including the operating complexity. Therefore, in parallel with the development of a next generation space launch vehicle, the practical process for acquisition of oversea land or sea space launch site near the Earth's equator and research for the optimization of orbiting methods of geostationary satellite injection must be continued.

A Measurement of Sea Transportation Load (해상운송 하중측정)

  • Jeon, Yeong-Du;Park, Jong-Chan;Jo, Cheol-Hun;Park, Dong-Su;Jeong, Ui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.143-148
    • /
    • 2006
  • This article summarizes the results of sea transportation load measurements, which will be used as the reference to the sea transportation environment condition for the launch vehicle of KSLV-I. KSLV-I will be transported by Sea from Pusan to the NARO space center in Gohung, Chunnam province. Since the vibration load condition during sea transportation is considered as one of the important design parameters of KSLV-I and its transportation means, it is necessary to directly measure the environmental condition of sea transportation loads prior to establish the sea transportation plan in detail. This material includes the measured data of 3-axis linear accelerations and 3-axis angular rates on the board of a barge-ship, which is towed by a tug boat during shipping operation. This barge-ship is same class with one which will actually carry KSLV-I. The results show that the measured load condition during sea transportation is not severer than the reference data of MIL-STD-810F and Zenit-3SL launch system.

  • PDF

A study on in-flight acoustic load reduction in launch vehicle fairing by FE-SEA hybrid method (FE-SEA 하이브리드 기법을 이용한 비행 중 발사체 페어링 내부 음향하중 저감에 관한 연구)

  • Choi, Injeong;Park, Seoryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.351-363
    • /
    • 2020
  • Launch vehicles are subject to airborne acoustic loads during atmospheric flight and these effects become pronounced especially in transonic region. As the vibration due to the acoustic loads can cause malfunction of payloads, it is essential to predict and reduce the acoustic loads. In this study, a complete process has been developed for predicting airborne vibro-acoustic environment inside the payload pairing and subsequent noise reduction procedure employing acoustic blankets and Helmholtz resonators. Acoustic loads were predicted by Reynolds-Averaged Navier-Stokes (RANS) analysis and a semi-empirical model for pressure fluctuation inside turbulent boundary layer. Coupled vibro-acoustic analysis was performed using VA One SEA's Finite Element Statistical Energy Analysis (FE-SEA) hybrid module and ANSYS APDL. The process has been applied to a hammerhead launch vehicle to evaluate the effect of acoustic load reduction and accordingly to verify the effectiveness of the process. The presently developed process enables to obtain quick analysis result with reasonable accuracy and thus is expected to be useful in the initial design phase of a launch vehicle.

Design and Experimental Study of a Launch and Recovery System for an Underwater Tow-fish with Consideration of Sea State (해상상태를 고려한 수중예인체 진회수시스템 설계 및 실험)

  • Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young;Kim, Myung-gyung;Kim, Jung-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.332-338
    • /
    • 2017
  • Launch and recovery system(LARS) is required to perform an USV-based underwater exploration. Through the analysis of the requirements according to the scenario of underwater exploration, the mechanism of LARS and the conceptual design of the mechanical parts of LARS are carried out. In addition, a USV motion can be induced due to environmental disturbances such as waves, so the detailed design of LARS for recovering the underwater tow-fish stably in consideration of the USV motion is performed. To verify the performance of launch and recovery operations, LARS and test bed were developed. The results show that the proposed LARS can stably launch and recovery an underwater tow-fish.

The Development of Air-based Space Launch Vehicle for small satellites (초소형위성 발사를 위한 공중기반 우주발사체 발전방안)

  • Cho, Taehwan;Lee, Soungsub
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • The end of the ROK-U.S. missile guidelines opened up the possibility of developing space launch vehicles for various platforms based on air and sea. In particular, the air-based space launch vehicle is an essential space power projection capability compared to the ground-based space launch vehicle in consideration of the geographical location of the Korean Peninsula, such as the deployment of various satellite orbits and the timely launch of satellite. In addition, compared to the ground-based launch vehicle, the cost reduction effect is large, and it has the merit of energy gain because it can be launched with the advantage of the aircraft's altitude and speed. Therefore, in this paper, the necessity of air-based space launch vehicle in the strategic environment of the Korean Peninsula is clearly presented, and through technology trend analysis of various air launch vehicle, the three methods are proposed to have the most efficient air-based space launch vehicle capability in the Korean situation.

Development of High Thrust $H_2O_2$ Monopropellant Thruster for Reaction Control System of Space Launch Vehicles (발사체 자세제어 적용을 위한 고추력 과산화수소 단일추진제 추력기 개발)

  • An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Seung;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Design and performance evaluation of $H_2O_2$ monopropellant thrusters to be used at reaction control of space launch vehicles were presented in this paper. Design thrust level was determined as 100, 250 Newton which is nominal thrust level for commercial space launch vehicles. Qualification thruster models including solenoid valves were developed after the reactor design were evaluated at engineering thruster models. Each thruster was evaluated by measurement of characteristic velocity, thrust, specific impulse, and pulse response times at sea level test condition.

Consideration of Launch and Recovery Systems for Operation of Underwater Robot from Manned Platform (유인플랫폼에서의 수중로봇 운용을 위한 진수 및 회수 체계 고찰)

  • Lee, Ki-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.141-149
    • /
    • 2016
  • In this technical note, the issues and challenges for the launch and recovery systems (LARS) and related techniques for the operation of an underwater robot from a manned platform are considered. Various types of LARS fitted to specific manned platforms, surface or sub-surface, are surveyed and categorized. The current UUV launch and recovery systems from surface ships and submarines utilize time consuming processes. As underwater robot technologies evolve and their roles are defined, safe and effective launch and recovery methods should be developed capable of reliable and efficient operations, particularly at a high sea state. To improve the existing underwater robot capabilities, LARS technology maturation is required in the near term, leading to the ability to incorporate autonomous LARS for an underwater robot on a manned platform. In the near term, particular emphasis should be placed on UUV LARS, which are surface ship based, with submarine based systems in the long term. Furthermore, for a dedicated LARS ship, independent of the existing host ship type, particular emphasis should be given to fully utilizing the capabilities of underwater robots.