• 제목/요약/키워드: Se Deposition

검색결과 474건 처리시간 0.028초

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

금속 사출성형 방식의 다공성 스테인리스 강 지지체에 형성된 팔라듐 수소 분리막의 투과 선택도 특성 (Hydrogen Perm-Selectivity Property of the Palladium Hydrogen Separation Membranes on Porous Stainless Steel Support Manufactured by Metal Injection Molding)

  • 김세홍;양지혜;임다솔;김동원
    • 한국표면공학회지
    • /
    • 제50권2호
    • /
    • pp.98-107
    • /
    • 2017
  • Pd-based membranes have been widely used in hydrogen purification and separation due to their high hydrogen diffusivity and infinite selectivity. However, it has been difficult to fabricate thin and dense Pd-based membranes on a porous stainless steel(PSS) support. In case of a conventional PSS support having the large size of surface pores, it was required to use complex surface treatment and thick Pd coating more than $6{\mu}m$ on the PSS was required in order to form pore free surface. In this study, we could fabricate thin and dense Pd membrane with only $3{\mu}m$ Pd layer on a new PSS support manufactured by metal injection molding(MIM). The PSS support had low surface roughness and mean pore size of $5{\mu}m$. Pd membrane were prepared by advanced Pd sputter deposition on the modified PSS support using fine polishing and YSZ vacuum filling surface treatment. At temperature $400^{\circ}C$ and transmembrane pressure difference of 1 bar, hydrogen flux and selectivity of $H_2/N_2$ were $11.22ml\;cm^{-2}min^{-1}$ and infinity, respectively. Comparing with $6{\mu}m$ Pd membrane, $3{\mu}m$ Pd membrane showed 2.5 times higher hydrogen flux which could be due to the decreased Pd layer thickness from $6{\mu}m$ to $3{\mu}m$ and an increased porosity. It was also found that pressure exponent was changed from 0.5 on $6{\mu}m$ Pd membrane to 0.8 on $3{\mu}m$ Pd membrane.

다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화 (Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes)

  • 김낙천;김세홍;이진범;김현희;양지혜;김동원
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구 (Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings)

  • 만지흠;이우재;장경수;최현진;권세훈
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.339-344
    • /
    • 2017
  • Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.

Spectroscopic Ellipsometry of Si/graded-$Si_{1-x}Ge_x$/Si Heterostructure Films Grown by Reduced Pressure Chemical Vapor Deposition

  • Seo, J.J.;Choi, S.S.;Yang, H.D.;Kim, J.Y.;Yang, J.W.;Han, T.H.;Cho, D.H.;Shim, K.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.190-191
    • /
    • 2006
  • We have investigated optical properties of Si/graded-$Si_{1-x}Ge_x$/Si heterostructures grown by reduced pressure chemical vapor deposition. Compared to standard condition using Si(100) substrate and growth temperature of $650^{\circ}C$, Si(111) resulted in low growth rate and high Ge mole fraction. Also samples grown at higher temperatures exhibited increased growth rate and reduced Ge mole fraction. The features regarding both substrate temperature and crystal orientation, representing high incorporation of silicon supplied from gas stream played as a key parameter, illustrate that reaction control were prevailed in this process growth condition. Using secondary ion mass spectroscopy and spectroscopic ellipsometry, microscopic changes in atomic components could be analyzed for Si/graded-$Si_{1-x}Ge_x$/Si heterostructures.

  • PDF

지방 급원을 달리한 식이에 첨가된 CLA가 지방조직과 Stearoyl-Co A Desaturase 1(SCD 1) 발현에 미치는 영향 (The Effect of Conjugated Linoleic Acid(CLA) Supplemented to Different Fat Sources on Fat Depositions and Stearoyl-CoA Desaturase l(SCDl) Gene Expression in Mice)

  • 이세나;강금지
    • 한국식품영양학회지
    • /
    • 제20권3호
    • /
    • pp.245-252
    • /
    • 2007
  • This study investigated the effects of conjugated linoleic acid(CLA) on the fat deposition, triglyceride levels and the expression of stearoyl-CoA desaturase 1(SCD1) in the livers of male ICR mice that were fed with either soybean oil or beef tallow supplemented with CLA. Mice weighing $25{\sim}30$ g were divided into four groups; soybean oil(SBO), and SBO supplemented with 1% CLA(SBOC), beef tallow(BT) and BT supplemented with 1% CLA(BTC). Each group consisted of 10 mice that were fed the experimental diets for 4 weeks. The experimental diets consisted of 64% carbohydrate, 20% protein, and 16% fat in terms of their contributions to total calories. All other nutrients were identical in the diets. Triglyceride measurements were completed using a kit. Fatty acid compositions were analyzed in the liver using gas chromatography. The levels of SCD1 expression were analyzed by RT-PCR in the liver. No significant differences were found for food intake level, body weight and food efficiency among the experimental groups. However, the weights of epididymal fat pads and plasma triglyceride levels were significantly lower in SBOC and BTC(p<0.05) compared to the SBO and BT groups. These effects were similar in the CLA supplemented groups. The expression level of SCD1 gene and ${\Delta}9$ desaturase index were not significantly different, regardless of the fat used for CLA supplementation. Based on these results, addition of CLA showed decreasing effects on the fat depots weight and the concentration of triglyceride regardless of the fat sources. The SCD1 gene expression and ${\Delta}9$ desaturase index were not influenced by the types of fats with respect to the CLA effects.

표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성 (Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition)

  • 임다솔;김세홍;김도희;조서현;김동원
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.277-290
    • /
    • 2018
  • In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰 (A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics)

  • 김세현;박근형;이은빈;유근택;이동현;양건;박주용;박민혁
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

무전해 도금에서 Sn 민감화와 Pd 활성화 공정의 세척 효과에 대한 연구 (A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating)

  • 정승재;장미세;정재원;양상선;권영태
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.511-516
    • /
    • 2022
  • Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn-Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.

Effect of Ag Alloying on Device Performance of Flexible CIGSe Thin-film Solar Cells Using Stainless Steel Substrates

  • Awet Mana Amare;Inchan Hwang;Inyoung Jeong;Joo Hyung Park;Jin Gi An;Soomin Song;Young-Joo Eo;Ara Cho;Jun-Sik Cho;Seung Kyu Ahn;Jinsu Yoo;SeJin Ahn;Jihye Gwak;Hyun-wook Park;Jae Ho Yun;Kihwan Kim;Donghyeop Shin
    • Current Photovoltaic Research
    • /
    • 제11권1호
    • /
    • pp.8-12
    • /
    • 2023
  • In this work, we investigated the thickness of Ag precursor layer to improve the performance of flexible CIGSe solar cells grown on stainless steel (STS) substrates through three-stage co-evaporation with Ga grading followed by alkali treatments. The small amount of incorporated Ag in CIGSe films showed enhancement in the grain size and device efficiency. With an optimal 6 nm-thick Ag layer, the best cell on the STS substrate yielded more than 16%, which is comparable to the soda-lime glass (SLG) substrate. Thus, the addition of controlled Ag combined with alkali post-deposition treatment (PDT) led to increased open-circuit voltage (VOC), accompanied by the increased built-in potential as confirmed by capacitance-voltage (C-V) measurements. It is related to a reduction of charge recombination at the depletion region. The results suggest that Ag alloying and alkali PDT are essential for producing highly efficient flexible CIGSe solar cells.