DOI QR코드

DOI QR Code

Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition

표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성

  • Lim, Da-Sol (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Se-Hong (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Do-Hui (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Cho, Seo-Hyun (Industry-Academia Collaboration Foundation, Kyonggi University) ;
  • Kim, Dong-Won (Department of Advanced Materials Engineering, Kyonggi University)
  • 임다솔 (경기대학교 신소재공학과) ;
  • 김세홍 (경기대학교 신소재공학과) ;
  • 김도희 (경기대학교 신소재공학과) ;
  • 조서현 (경기대학교 산학협력단) ;
  • 김동원 (경기대학교 신소재공학과)
  • Received : 2018.08.10
  • Accepted : 2018.10.02
  • Published : 2018.10.31

Abstract

In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

Keywords

PMGHBJ_2018_v51n5_277_f0001.png 이미지

Fig. 1. Schematic diagram of experiment processes for Pd-Ni-Ag alloy hydrogen separation membrane.

PMGHBJ_2018_v51n5_277_f0002.png 이미지

Fig. 2. FE-SEM images, CLSM images and apparent porosity of porous stainless steel supports : (a) HP PSS (b) MIM PSS.

PMGHBJ_2018_v51n5_277_f0003.png 이미지

Fig. 3. FE-SEM images and CLSM images of porous stainless steel supports after surface treatment : (a) HP PSS (b) MIM PSS.

PMGHBJ_2018_v51n5_277_f0004.png 이미지

Fig. 4. FE-SEM images of sputtered Pd films on the modified MIM PSS at various working pressure and DC power.

PMGHBJ_2018_v51n5_277_f0005.png 이미지

Fig. 5. FE-SEM images of sputtered Pd, Ag and Ni films on the modified MIM PSS : (a) Pd, (b) Ag, (c) Ni.

PMGHBJ_2018_v51n5_277_f0006.png 이미지

Fig. 6. FE-SEM images, XRD patterns and EDS profiles of Pd-Ni-Ag hydrogen separation membrane : (a) sputter as-deposition, (b) after heat treatment.

PMGHBJ_2018_v51n5_277_f0007.png 이미지

Fig. 7. Schematic illustration of Pd/Ag sputter multi-deposition diffusion barrier for preventing intermetallic diffusion in PSS : (a) FE-SEM images of Pd alloy films with dense and homogeneous microstructure, (b) Fe-Ag phase diagram, (c) Fe-Pd phase diagram, (d) cross-sectional EDS composition line scan profiles.

PMGHBJ_2018_v51n5_277_f0008.png 이미지

Fig. 8. FE-SEM images and surface composition of Pd alloy as a function of thickness ratio between Pd and Ni films after heat treatment for 1h at 923 K : (a) Pd/Ni layer on Si wafer, (b) Pd/Ni/Pd/Ag/Pd layer on modified MIM PSS.

PMGHBJ_2018_v51n5_277_f0009.png 이미지

Fig. 9. Hydrogen perm-selectivity of Pd-Ni-Ag alloy hydrogen separation membranes as a function of surface Ni composition at various pressure difference.

Table 1. Comparison of different Pd-based membranes.

PMGHBJ_2018_v51n5_277_t0001.png 이미지

References

  1. S. K. Ryi, J. Y. Han, C. H. Kim, H. K. Kim, H. Y. Jung, Technical trends of hydrogen production, Clean. Technol., 23 (2017) 121-132
  2. S. Uemiya, N. Sato, H. Ando, T. Matsuda, E. Kikuchi, Steam reforming of methane in a hydrogen-permeable membrane reactor, Appl. Catal., 67(1) (1990) 223-230. https://doi.org/10.1016/S0166-9834(00)84445-0
  3. S. K. Ryi, J. S. Park, Research trend of Pd-based hydrogen membrane, J. Ind. Eng. Chem., 14(3) (2011) 46-53.
  4. D. Wang, J. Tong, H. Xu, Y. Matsumura, Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide, Catal. Today, 93-95 (2004) 689-693. https://doi.org/10.1016/j.cattod.2004.06.060
  5. K. R. Hwang, D. K. Oh, S. W. Lee, J. S. Park, M. H. Song, W. H. Rhee, Porous stainless steel support for hydrogen separation Pd membrane; fabrication by metal injection molding and simple surface modification, I. J. Hydrogen. Energy, 42(21) (2017) 14583-14592. https://doi.org/10.1016/j.ijhydene.2017.04.032
  6. C. H. Kim, J. H. Lee, S. T. Jo, D. W. kim, Improvement in long-term stability of Pd alloy hydrogen separation membranes, J. Kor. Inst. Surf. Eng., 48 (2015) 11-22. https://doi.org/10.5695/JKISE.2015.48.1.011
  7. N. Jemaa, J. Shu, S. Kaliaguine, B. P. A. Grandjean, Thin palladium film formation on shot peening modified porous stainless steel substrates, Ind. Eng. Chem. Res., 35(3) (1996) 973-977. https://doi.org/10.1021/ie950437t
  8. R. S. A. de lange, K. Keizer, A. J. Burggraaf, Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes, J. Membr. Sci., 104(1-2) (1995) 81-100. https://doi.org/10.1016/0376-7388(95)00014-4
  9. N. W. Ockwig, T. M. Nenoff, Membranes for hydrogen separation, Chem. Rev., 107(10) (2007) 4078-4110. https://doi.org/10.1021/cr0501792
  10. M. Wang, J. Song, Y. Li, X. Tan, Y. Chu, S. Liu, Hydrogen separation at elevated temperatures using metallic nickel hollow fiber membranes, AIChE. J., 63(7) (2017) 3026-3034. https://doi.org/10.1002/aic.15652
  11. H. B. Zhao, G. X. Xiong, G. V. Baron, Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering, Catal. Today, 56(1-3) (2000) 89-96. https://doi.org/10.1016/S0920-5861(99)00266-7
  12. S. E. Nam, K. H. Lee, A study on the palladium/nickel composite membrane by vacuum electrodeposition, J. Membr. Sci., 170(1) (2000) 91-99. https://doi.org/10.1016/S0376-7388(99)00359-2
  13. N. Itoh, T. Akiha, T. Sato, Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity, Catal. Today, 104(2-4) (2005) 231-237. https://doi.org/10.1016/j.cattod.2005.03.048
  14. S. H. Kim, J. H. Yang, D. S. Lim, D. W. Kim, Hydrogen perm-selectivity property of the palladium hydrogen separation membranes on porous stainless steel support manufactured by metal injection molding, J. Korean Inst. Surf. Eng., 50(2) (2017) 98-107. https://doi.org/10.5695/JKISE.2017.50.2.98
  15. S. Nayebossadri, S. Fletcher, J. D. Speight, D. Book, Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes, J. Membr. Sci., 515 (2016) 22-28 https://doi.org/10.1016/j.memsci.2016.05.036
  16. R. Messier, A. P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol., A2, (1984) 500.
  17. J. A. Thornton, Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol., 11 (1974) 666. https://doi.org/10.1116/1.1312732
  18. C. H. Kim, J. Y. Han, N. C. Kim, S. K. Ryi, D. W. Kim, Characteristics of dense palladium alloy membranes formed by nano-scale nucleation and lateral growth, J. Membr. Sci., 502 (2016) 57-64. https://doi.org/10.1016/j.memsci.2015.12.010
  19. Kyonggi University Industry Academy Cooperation Group, KR-B1-10-1861701, 03.30, 2018.
  20. Y. Huang, R. Dittmeyer, Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion, J. Membr. Sci., 282(1-2) (2006) 296-310. https://doi.org/10.1016/j.memsci.2006.05.032
  21. H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 29, Sections 2.2.
  22. H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 200, Sections 2.2.
  23. J. H. Lee, J. Y. Han, K. M. Kim, S. K. Ryi, D. W. Kim, Development of homogeneous Pd-Ag alloy membrane formed on porous stainless steel by multi-layered films and Ag-upfilling heat treatment, J. Membr. Sci., 492 (2015) 242-248. https://doi.org/10.1016/j.memsci.2015.04.029
  24. R. Dittmeyer, V. Hollein, and K. Daub, Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium, J. Mol. Catal. A: Chem., 173, 135 (2001). https://doi.org/10.1016/S1381-1169(01)00149-2
  25. R. S. Souleimanova, A. S. Mulasyan, A. Varma, Pd membranes formed by electroless plating with osmosis: H2 permeation studies, AIChE J., 48 (2002) 262-298. https://doi.org/10.1002/aic.690480210
  26. G. Huiyuan, S. L. Jerry Y, L. Yongdan, Z. Baoquan, Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel, J. Membr. Sci., 265 (2005) 142-152. https://doi.org/10.1016/j.memsci.2005.04.050
  27. S. Zhongliang, W. Shanqiang, S. J. A, R. Mustapha, An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition, J. Membr. Sci., 280 (2006) 705-711. https://doi.org/10.1016/j.memsci.2006.02.026
  28. B. K. R. Nair, J. Choi, M. P. Harold, Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes, J. Membr. Sci., 288 (2006) 67-84.
  29. S. K. Ryi, J.S. Park, K. R. Hwang, C. B Lee, S. W. Lee, Repair of Pd-based composite membrane by polishing treatment, Int. J. Hydrogen Energy, 36 (2011) 13776-13780. https://doi.org/10.1016/j.ijhydene.2011.07.120
  30. C. S. Jun, K. H. Lee, Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method (cold-wall), J. Membr. Sci., 176 (2000) 121-130. https://doi.org/10.1016/S0376-7388(00)00438-5
  31. D. W. Kim, J. W. Park, S. H. Kim, J. S. Park, A study on the Pd-Ni alloy hydrogen membrane using the sputter deposition, J. Kor. Inst. Surf. Eng., 37 (2004) 243-248
  32. Y. M. Hwang, K. J. Kim, W. W. So, S. J. Moon, K. Y. Lee, A study on intermediate layer for palladium-based alloy composite membrane fabrication, J. Korean Ind. Eng. Chem., 17 (2006) 458-464.
  33. F. Piskin, T. Ozturk, Combinatorial screening of Pd-Ag-Ni membranes for hydrogen separation, J. Membr. Sci., 524 (2017) 631-636. https://doi.org/10.1016/j.memsci.2016.11.066
  34. K. Hideto, Y. Hisataka, Y. Isamu, P. Thijs, B. Rune, Inhibition effect of CO on hydrogen permeability of Pd-Ag membrane applied in a microchannel module configuration, Int. J. Hydrogen. Energy, 39 (2014) 17201-17209. https://doi.org/10.1016/j.ijhydene.2014.08.056
  35. S.K. Ryi, J. S. Park, S. H. Kim, D. W. Kim, I. Cho, Formation of a defect-free Pd-Cu-Ni ternary alloy membrane on a polished porous nickel support (PNS), J. Membr. Sci., 318 (2008) 346-354 https://doi.org/10.1016/j.memsci.2008.02.055
  36. J. Y. Han, C. H. Kim, S. H. Kim, D. W. Kim, Development of Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity, Adv. Mater. Sci. Eng., 2014 (2014) 1-10
  37. B. L. Woo, D. W. Kim, A study on the palladium alloy membrane for hydrogen separation, J. Kor. Inst. Surf. Eng., 42 (2009) 232-239 https://doi.org/10.5695/JKISE.2009.42.5.232
  38. A. E. Lewis, H. Zhao, H. Syed, C. A. Wolden, J. D. Way, PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide, J. Membr. Sci., 465 (2014) 167-176 https://doi.org/10.1016/j.memsci.2014.04.022