• Title/Summary/Keyword: Schrodinger-type problem

Search Result 6, Processing Time 0.018 seconds

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR

  • CHO, HONG RAE;LEE, HAN-WOOL;CHO, EUNSUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • We consider the initial value problem of the Schrodinger equation for an interesting Cauchy-Euler type operator ${\mathfrak{R}}$ on ${\mathbb{C}}^n$ that is an analogue of the harmonic oscillator in ${\mathbb{R}}^n$. We get an appropriate $L^1-L^{\infty}$ dispersive estimate for the solution of the initial value problem.

MULTIPLICITY OF POSITIVE SOLUTIONS TO SCHRÖDINGER-TYPE POSITONE PROBLEMS

  • Ko, Eunkyung
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.13-20
    • /
    • 2022
  • We establish multiplicity results for positive solutions to the Schrödinger-type singular positone problem: -∆u + V (x)u = λf(u) in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN, N > 2, λ is a positive parameter, V ∈ L(Ω) and f : [0, ∞) → (0, ∞) is a continuous function. In particular, when f is sublinear at infinity we discuss the existence of at least three positive solutions for a certain range of λ. The proofs are mainly based on the sub- and supersolution method.

Self-consistent Solution Method of Multi-Subband BTE in Quantum Well Device Modeling (양자 우물 소자 모델링에 있어서 다중 에너지 부준위 Boltzmann 방정식의 Self-consistent한 해법의 개발)

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2002
  • A new self-consistent mathematical model for semiconductor quantum well device was developed. The model was based on the direct solution of the Boltzmann transport equation, coupled to the Schrodinger and Poisson equations. The solution yielded the distribution function for a two-dimensional electron gas(2DEG) in quantum well devices. To solve the Boltzmann equation, it was transformed into a tractable form using a Legendre polynomial expansion. The Legendre expansion facilitated analytical evaluation of the collision integral, and allowed for a reduction of the dimensionality of the problem. The transformed Boltzmann equation was then discretized and solved using sparce matrix algebra. The overall system was solved by iteration between Poisson, Schrodinger and Boltzmann equations until convergence was attained.

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A SCHRÖDINGER-TYPE SINGULAR FALLING ZERO PROBLEM

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.39 no.3
    • /
    • pp.355-367
    • /
    • 2023
  • Extending [14], we establish the existence of multiple positive solutions for a Schrödinger-type singular elliptic equation: $$\{{-{\Delta}u+V(x)u={\lambda}{\frac{f(u)}{u^{\beta}}},\;x{\in}{\Omega}, \atop u=0,\;x{\in}{\partial}{\Omega},$$ where 0 ∈ Ω is a bounded domain in ℝN, N ≥ 1, with a smooth boundary ∂Ω, β ∈ [0, 1), f ∈ C[0, ∞), V : Ω → ℝ is a bounded function and λ is a positive parameter. In particular, when f(s) > 0 on [0, σ) and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

EXISTENCE OF A POSITIVE SOLUTION TO INFINITE SEMIPOSITONE PROBLEMS

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.40 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • We establish an existence result for a positive solution to the Schrödinger-type singular semipositone problem: $-{\Delta}u\,=\,V(x)u\,=\,{\lambda}{\frac{f(u)}{u^{\alpha}}}$ in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN , N > 2, λ ∈ ℝ is a positive parameter, V ∈ L(Ω), 0 < α < 1, f ∈ C([0, ∞), ℝ) with f(0) < 0. In particular, when ${\frac{f(s)}{s^{\alpha}}}$ is sublinear at infinity, we establish the existence of a positive solutions for λ ≫ 1. The proofs are mainly based on the sub and supersolution method. Further, we extend our existence result to infinite semipositone problems with mixed boundary conditions.

GROUND STATE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER-POISSON-KIRCHHOFF TYPEPROBLEMS WITH A CRITICAL NONLINEARITY IN ℝ3

  • Qian, Aixia;Zhang, Mingming
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1181-1209
    • /
    • 2021
  • In the present paper, we are concerned with the existence of ground state sign-changing solutions for the following Schrödinger-Poisson-Kirchhoff system $$\;\{\begin{array}{lll}-(1+b{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}{\mid}{\nabla}u{\mid}^2dx){\Delta}u+V(x)u+k(x){\phi}u={\lambda}f(x)u+{\mid}u{\mid}^4u,&&\text{in }{\mathbb{R}}^3,\\-{\Delta}{\phi}=k(x)u^2,&&\text{in }{\mathbb{R}}^3,\end{array}$$ where b > 0, V (x), k(x) and f(x) are positive continuous smooth functions; 0 < λ < λ1 and λ1 is the first eigenvalue of the problem -∆u + V(x)u = λf(x)u in H. With the help of the constraint variational method, we obtain that the Schrödinger-Poisson-Kirchhoff type system possesses at least one ground state sign-changing solution for all b > 0 and 0 < λ < λ1. Moreover, we prove that its energy is strictly larger than twice that of the ground state solutions of Nehari type.