• Title/Summary/Keyword: Schottky-barrier

Search Result 317, Processing Time 0.024 seconds

Dielectric and Electrical Characteristics of Fatty Acid System LB Filmes According to Length of Methylene Group (메틸렌기의 길이에 따른 지방산계 LB막의 유전 및 전기적 특성)

  • 김도균;강기호;최용성;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.300-305
    • /
    • 2000
  • We have investigated the dielectric and electrical characteristics of palmitic acid(PA) stearic acid(SA) and arachidic acid(AA) Langmuir-Blodgett(LB) films because these fatty acid systems have a same hydrophilic group and a different hydrophobic one(methylene group or alkyl chain length). The fatty acid systems were used as LB films and the status of the deposited films was confirmed by evaluating the transfer ratio the UV absorption and the capacitance. The dielectric characteristics such as the frequency-capacitance characteristics and the dielectric dispersion and absorption characteristics of PA SA and AA through-plane were measured. The relative dielectric constants of PA, SA and AA LB films were about 3.0~4.6, 2.7~3.0 and 2.4~3.0 respectively. That is the relative dielectric constants were decreased in proportion to the chain length of methylene group. Also the dielectric dispersion and absorption of each fatty acid LB films have arisen from spontaneous polarization of dipole polarization in the range of 10$^4$~10$^{5}$ [Hz]. The conductivity of PA, SA and AA LB films obtained from I-V characteristics were about 9$\times$10$^{-14}$ , 3$\times$10$^{-14}$ and 5$\times$10$^{-15}$ [S/cm]. respectively. These results have shown the insulating materials and could control the conductivity y changing the length of methylene group. Also we have confirmed that the barrier height of fatty acid systems were almost the same ones obtained from dielectric characteristics.

  • PDF

Characterization of the Schottky Barrier Height of the Pt/HfO2/p-type Si MIS Capacitor by Internal Photoemission Spectroscopy (내부 광전자방출 분광법을 이용한 Pt/HfO2/p-Si Metal-Insulator-Semiconductor 커패시터의 쇼트키 배리어 분석)

  • Lee, Sang Yeon;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • In this study, we used I-V spectroscopy, photoconductivity (PC) yield and internal photoemission (IPE) yield using IPE spectroscopy to characterize the Schottky barrier heights (SBH) at insulator-semiconductor interfaces of Pt/$HfO_2$/p-type Si metal-insulator-semiconductor (MIS) capacitors. The leakage current characteristics of the MIS capacitor were analyzed according to the J-V and C-V curves. The leakage current behavior of the capacitors, which depends on the applied electric field, can be described using the Poole-Frenkel (P-F) emission, trap assisted tunneling (TAT), and direct tunneling (DT) models. The leakage current transport mechanism is controlled by the trap level energy depth of $HfO_2$. In order to further study the SBH and the electronic tunneling mechanism, the internal photoemission (IPE) yield was measured and analyzed. We obtained the SBH values of the Pt/$HfO_2$/p-type Si for use in Fowler plots in the square and cubic root IPE yield spectra curves. At the Pt/$HfO_2$/p-type Si interface, the SBH difference, which depends on the electrical potential, is related to (1) the work function (WF) difference and between the Pt and p-type Si and (2) the sub-gap defect state features (density and energy) in the given dielectric.

Power Semiconductor SMD Package Embedded in Multilayered Ceramic for Low Switching Loss

  • Jung, Dong Yun;Jang, Hyun Gyu;Kim, Minki;Jun, Chi-Hoon;Park, Junbo;Lee, Hyun-Soo;Park, Jong Moon;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.866-873
    • /
    • 2017
  • We propose a multilayered-substrate-based power semiconductor discrete device package for a low switching loss and high heat dissipation. To verify the proposed package, cost-effective, low-temperature co-fired ceramic, multilayered substrates are used. A bare die is attached to an embedded cavity of the multilayered substrate. Because the height of the pad on the top plane of the die and the signal line on the substrate are the same, the length of the bond wires can be shortened. A large number of thermal vias with a high thermal conductivity are embedded in the multilayered substrate to increase the heat dissipation rate of the package. The packaged silicon carbide Schottky barrier diode satisfies the reliability testing of a high-temperature storage life and temperature humidity bias. At $175^{\circ}C$, the forward current is 7 A at a forward voltage of 1.13 V, and the reverse leakage current is below 100 lA up to a reverse voltage of 980 V. The measured maximum reverse current ($I_{RM}$), reverse recovery time ($T_{rr}$), and reverse recovery charge ($Q_{rr}$) are 2.4 A, 16.6 ns, and 19.92 nC, respectively, at a reverse voltage of 300 V and di/dt equal to $300A/{\mu}s$.

Effect of Hydrogen on leakage current characteristics of (Pb, La) (Zr, Ti )$O_3$(PLZT) thin film capacitors with Pt or Ir-based top electrodes (Pt 또는 Ir 계열의 상부전극을 갖는 (Pb, La) (Zr, Ti)$O_3$ (PLZT) 박막의 누설전류특성에 미치는 수소 열처리의 효과)

  • Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.151-154
    • /
    • 2001
  • The leakage current behaviors of PLZT capacitors with top electrodes of Pt, Ir, and $IrO_2$ are investigated before and after hydrogen forming gas anneal. The P-E hysteresis and fatigue properties of Pt/PLZT/Pt capacitors are almost recovered after recovery anneal in $O_2$ ambient. The leakage current mechanisms of PLZT capacitors with Pt and $IrO_2$ top electrodes are consistent with space-charge influenced injection model showing the strong time dependence irrespective of annealing conditions. On the other hand, the leakage current behavior of Ir/PLZT/Pt capacitor shows steady state independent of time because IrPb, conducting phase, formed at interface between Ir top and PLZT is a high conduction path. Teh leakage current mechanism of Ir/PLZT/Pt capacitor is consistent with Schottky barrier model.

  • PDF

Diode and MOSFET Properties of Trench-Gate-Type Super-Barrier Rectifier with P-Body Implantation Condition for Power System Application

  • Won, Jong Il;Park, Kun Sik;Cho, Doo Hyung;Koo, Jin Gun;Kim, Sang Gi;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.244-251
    • /
    • 2016
  • In this paper, we investigate the electrical characteristics of two trench-gate-type super-barrier rectifiers (TSBRs) under different p-body implantation conditions (low and high). Also, design considerations for the TSBRs are discussed in this paper. The TSBRs' electrical properties depend strongly on their respective p-body implantation conditions. In the case of the TSBR with a low p-body implantation condition, it exhibits MOSFET-like properties, such as a low forward voltage ($V_F$) drop, high reverse leakage current, and a low peak reverse recovery current owing to a majority carrier operation. However, in the case of the TSBR with a high p-body implantation condition, it exhibits pn junction diode.like properties, such as a high $V_F$, low reverse leakage current, and high peak reverse recovery current owing to a minority carrier operation. As a result, the TSBR with a low p-body implantation condition is capable of operating as a MOSFET, and the TSBR with a high p-body implantation condition is capable of operating as either a pn junction diode or a MOSFET, but not both at the same time.

Interfacial reaction and Fermi level movements of p-type GaN covered by thin Pd/Ni and Ni/Pd films

  • 김종호;김종훈;강희재;김차연;임철준;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.115-115
    • /
    • 1999
  • GaN는 직접천이형 wide band gap(3.4eV) 반도체로서 청색/자외선 발광소자 및 고출력 전자장비등에의 응용성 때문에 폭넓게 연구되고 있다. 이러한 넓은 분야의 응용을 위해서는 열 적으로 안정된 Ohmic contact을 반드시 실현되어야 한다. n-type GaN의 경우에는 GaN계면에서의 N vacancy가 n-type carrier로 작용하기 때문에 Ti, Al, 같은 금속을 접합하여 nitride를 형성함에 의해서 낮은 접촉저항을 갖는 Ohmic contact을 하기가 쉽다. 그러나 p-type의 경우에는 일 함수가 크고 n-type와 다르게 nitride가 형성되지 않는 금속이 Ohmic contact을 할 가능성이 많다. 시료는 HF(HF:H2O=1:1)에서 10분간 초음파 세척을 한 후 깨끗한 물에 충분히 헹구었다. 그런 후에 고순도 Ar 가스로 건조시켰다. Pd와 Ni은 열적 증착법(thermal evaporation)을 사용하여 p-GaN에 상온에서 증착하였다. 현 연구에서는 열처리에 의한 Pd의 clustering을 줄이기 위해서 wetting이 좋은 Ni을 Pd 증착 전과 후에 삽입하였으며, monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy)을 사용하여 열처리 전과 40$0^{\circ}C$, 52$0^{\circ}C$ 그리고 695$0^{\circ}C$에서 3분간 열처리 후의 온도에 따른 morphology 변화, 계면반응(interfacial reaction) 및 벤드 휨(band bending)을 비교 연구하였다. Nls core level peak를 사용한 band bending에서 Schottky barrier height는 Pd/Ni bi-layer 접합시 2.1eV를, Ni/Pd bi-layer의 경우에 2.01eV를 얻었으며, 이는 Pd와 Ni의 이상적인 Schottky barrier height 값 2.38eV, 2.35eV와 비교해 볼 때 매우 유사한 값임을 알 수 있다. 시료를 후열처리함에 의해 52$0^{\circ}C$까지는 barrier height는 큰 변화가 없으나, $650^{\circ}C$에서 3분 열처리 후에 0.36eV, 0.28eV 만큼 band가 더 ?을 알 수 있었다. Pd/Ni 및 Ni/Pd 접합시 $650^{\circ}C$까지 후 열 처리 과정에서 계면에서 matallic Ga은 온도에 비례하여 많은 양이 형성되어 표면으로 편석(segregation)되어지나, In-situ SAM을 이용한 depth profile을 통해서 Ni/Pd, Pd/Ni는 증착시 uniform하게 성장함을 알 수 있었으며, 후열처리 함에 의해서 점차적으로 morphology 의 변화가 일어나기 시작함을 볼 수 있었다. 이는 $650^{\circ}C$에서 열처리 한후의 ex-situ AFM을 통해서 재확인 할 수 있었다. 이상의 결과로부터 GaN에 Pd를 접합 시 심한 clustering이 형성되어 Ohoic contact에 문제가 있으나 Pd/Ni 혹은 Ni/Pd bi-layer를 사용함에 의해서 clustering의 크기를 줄일 수 있었다. Clustering의 크기는 Ni/Pd bi-layer의 경우가 작았으며, $650^{\circ}C$ 열처리 후에 barrier height는 Pd/Ni bi-layer의 경우에도 Ni의 영향을 받음을 알 수 있었다.

  • PDF

4H-SiC(0001) Epilayer Growth and Electrical Property of Schottky Diode (4H-SiC(0001) Epilayer 성장 및 쇼트키 다이오드의 전기적 특성)

  • Park, Chi-Kwon;Lee, Won-Jae;Nishino Shigehiro;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.344-349
    • /
    • 2006
  • A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. We aimed to systematically investigate the dependence of SiC epilayer quality and growth rate during the sublimation growth using the CST method on various process parameters such as the growth temperature and working pressure. The etched surface of a SiC epitaxial layer grown with low growth rate $(30{\mu}m/h)$ exhibited low etch pit density (EPD) of ${\sim}2000/cm^2$ and a low micropipe density (MPD) of $2/cm^2$. The etched surface of a SiC epitaxial layer grown with high growth rate (above $100{\mu}m/h$) contained a high EPD of ${\sim}3500/cm^2$ and a high MPD of ${\sim}500/cm^2$, which indicates that high growth rate aids the formation of dislocations and micropipes in the epitaxial layer. We also investigated the Schottky barrier diode (SBD) characteristics including a carrier density and depletion layer for Ni/SiC structure and finally proposed a MESFET device fabricated by using selective epilayer process.

Fabrications of Pd/poly 3C-SiC schottky diodes for hydrogen gas sensor at high temperatures (고온 가스센서용 Pd-다결정 3C-SiC 쇼트키 다이오드 제작)

  • Ahn, Jeong-Hak;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.78-79
    • /
    • 2008
  • In this paper, poly 3C-SiC thin films were grown on $SiO_2$/Si by atmospheric pressure chemical vapor deposition (APCVD) using HMDS, $H_2$, and Ar gas at $1100^{\circ}C$ for 30 min, respectively. And then, palladium films were deposited on poly 3C-SiC by RF magnetron sputter. Thickness, uniformity, and quality of these samples were performed by SEM. Crystallinity and preferred orientationsof palladium were analyzed by XRD. And Pd/poly 3C-SiC schottky diodes were fabricated and characterized by current-voltage measurements. Its electric current density Js and barrier height voltage were measured as $2\times10^{-3}$ A/$cm^2$, 0.58 eV, respectively. And these devices operated about $350^{\circ}C$. From results, Pd/poly 3C-SiC devices are promising for high temperature hydrogen sensor and applications.

  • PDF

Development of Enhanced Interleaved PFC Boost Converter typed 650V Intelligent Power Module for up to 10kW HVAC Systems (10kW급 HVAC 시스템을 위한 Enhanced Interleaved PFC Boost 컨버터 형태의 650V IPM 개발)

  • Lee, Kihyun;Hong, Seunghyun;Kim, Taehyun;Jeong, Jinyong;Kwon, Taesung
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.536-538
    • /
    • 2018
  • This paper introduces an enhanced interleaved (IL) PFC (Power Factor Correction) boost converter typed 650V Intelligent Power Module (IPM), which is fully optimized hybrid IGBT converter modules; Silicon (Si) IGBT and Silicon Carbide (SiC) diode, for up to 10kW HVAC (Heating, Ventilation, and Air Conditioning) systems. It utilizes newly developed $4^{th}$ Generation Field Stop (FS) trench IGBTs, $EXTREMEFAST^{TM}$ anti-paralleled diodes, SiC Junction Barrier Schottky (JBS) diodes, Bridge rectifiers, Multi-function LVIC, and Built-in thermistor provide good reliable characteristics for the entire system. This module also takes technical advantage of DBC (Direct Bonded Copper) substrate for the better thermal performance. It is shown that the Si IGBT/SiC diode hybrid IL PFC module can achieve excellent EMI performance and greatly enhance the power handling capability or switching frequency of various applications compared to the Si IGBT/Diode. This paper provides an overall description of the newly developed 650V/50A Hybrid SiC IL PFC IPM product.

  • PDF

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.