• 제목/요약/키워드: Scene text detection

검색결과 38건 처리시간 0.019초

선명화 기법을 이용한 TextFuseNet 성능 향상 (Performance Improvement of TextFuseNet using Image Sharpening)

  • 정지연;천지은;정유철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.71-73
    • /
    • 2021
  • 본 논문에서는 Scene Text Detection의 새로운 프레임워크인 TextFuseNet에 영상처리 관련 기술인 선명화 기법을 제안한다. Scene Text Detection은 야외 간판이나 표지판 등 불특정 배경에서 글자를 인식하는 기술이며, 그중 하나의 프레임워크가 TextFuseNet이다. TextFuseNet은 문자, 단어, 전역 기준으로 텍스트를 감지하는데, 여기서는 영상처리의 기술인 선명화 기법을 적용하여 TextFuseNet의 성능을 향상시키는 것이 목적이다. 선명화 기법은 기존 Sharpening Filter 방법과 Unsharp Masking 방법을 사용하였고 이 중 Sharpening Filter 방법을 적용하였을 때 AP가 0.9% 향상되었음을 확인하였다.

  • PDF

텐서보팅을 이용한 텍스트 배열정보의 획득과 이를 이용한 텍스트 검출 (Extraction of Text Alignment by Tensor Voting and its Application to Text Detection)

  • 이귀상;또안;박종현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.912-919
    • /
    • 2009
  • 본 논문에서는 이차원 텐서보팅과 에지 기반 방법을 이용하여 자연영상에서 문자를 검출하는 새로운 방법을 제시한다. 텍스트의 문자들은 보통 연속적인 완만한 곡선 상에 배열되어 있고 서로 가깝게 위치하며, 이러한 특성은 텐서보팅에 의하여 효과적으로 검출될 수 있다. 이차원 텐서보팅은 토큰의 연속성을 curve saliency 로 산출하며 이러한 특성은 다양한 영상해석에 사용된다. 먼저 에지 검출을 이용하여 영상 내의 텍스트 영역이 위치할 가능성이 있는 텍스트 후보영역을 찾고 이러한 후보영역의 연속성을 텐서보팅에 의해 검증하여 잡음영역을 제거하고 텍스트 영역만을 구분한다. 실험 결과, 제안된 방법은 복잡한 자연영상에서 효과적으로 텍스트 영역을 검출함을 확인하였다.

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • 제11권4호
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.

Deep-Learning Approach for Text Detection Using Fully Convolutional Networks

  • Tung, Trieu Son;Lee, Gueesang
    • International Journal of Contents
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2018
  • Text, as one of the most influential inventions of humanity, has played an important role in human life since ancient times. The rich and precise information embodied in text is very useful in a wide range of vision-based applications such as the text data extracted from images that can provide information for automatic annotation, indexing, language translation, and the assistance systems for impaired persons. Therefore, natural-scene text detection with active research topics regarding computer vision and document analysis is very important. Previous methods have poor performances due to numerous false-positive and true-negative regions. In this paper, a fully-convolutional-network (FCN)-based method that uses supervised architecture is used to localize textual regions. The model was trained directly using images wherein pixel values were used as inputs and binary ground truth was used as label. The method was evaluated using ICDAR-2013 dataset and proved to be comparable to other feature-based methods. It could expedite research on text detection using deep-learning based approach in the future.

에지 및 국부적 최소/최대 변환을 이용한 자연 이미지로부터 텍스트 영역 검출 (Text Region Detection using Edge and Regional Minima/Maxima Transformation from Natural Scene Images)

  • 박종천;이근왕
    • 한국산학기술학회논문지
    • /
    • 제10권2호
    • /
    • pp.358-363
    • /
    • 2009
  • 자연이미지로부터 텍스트 영역 검출은 다양한 응용분야에 활용됨으로 이 분야의 많은 연구가 필요하다. 최근의 연구 방법은 에지 및 연결요소 기반 방법을 결합하는 다양한 알고리즘을 이용하여 텍스트 영역을 검출하고 있다. 그러므로 본 논문은 이러한 결합방법으로 에지 및 국부적 최소/최대 변환 방법을 이용하여 텍스트 영역을 검출하는 알고리즘을 제안한다. 명도 이미지로부터 에지 및 국부적 최소/최대 연결성분을 검출하고, 에지 및 국부적 최소/최대 연결성분을 레이블화한다. 레이블된 영역을 분석하여 텍스트 후보 영역을 검출하고, 검출된 각각의 텍스트 후보 영역을 결합하여 단일 텍스트 후보 이미지를 생성한다. 텍스트 후보 개별문자의 인접성 및 유사도를 비교하여 검증함으로서 최종적인 텍스트 영역을 검출한다. 실험결과 제안한 알고리즘은 에지 요소 및 국부적 최소/최대 연결요소 검출 방법을 결합하여 자연 이미지로부터 텍스트 영역 검출의 정확도 및 재현률을 향상할 수 있었다.

YOLO, EAST: 신경망 모델을 이용한 문자열 위치 검출 성능 비교 (YOLO, EAST : Comparison of Scene Text Detection Performance, Using a Neural Network Model)

  • 박찬용;임영민;정승대;조영혁;이병철;이규현;김진욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.115-124
    • /
    • 2022
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 일반적으로 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 실험결과 YOLOv3는 문자열 탐지에 비교적 약점을 보이지만 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하였다. 따라서, 이들 YOLO 신경망 기반 문자열 탐지방법이 향후 문자 인식 분야에서 많이 활용될 것으로 전망한다.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

Arabic Words Extraction and Character Recognition from Picturesque Image Macros with Enhanced VGG-16 based Model Functionality Using Neural Networks

  • Ayed Ahmad Hamdan Al-Radaideh;Mohd Shafry bin Mohd Rahim;Wad Ghaban;Majdi Bsoul;Shahid Kamal;Naveed Abbas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1807-1822
    • /
    • 2023
  • Innovation and rapid increased functionality in user friendly smartphones has encouraged shutterbugs to have picturesque image macros while in work environment or during travel. Formal signboards are placed with marketing objectives and are enriched with text for attracting people. Extracting and recognition of the text from natural images is an emerging research issue and needs consideration. When compared to conventional optical character recognition (OCR), the complex background, implicit noise, lighting, and orientation of these scenic text photos make this problem more difficult. Arabic language text scene extraction and recognition adds a number of complications and difficulties. The method described in this paper uses a two-phase methodology to extract Arabic text and word boundaries awareness from scenic images with varying text orientations. The first stage uses a convolution autoencoder, and the second uses Arabic Character Segmentation (ACS), which is followed by traditional two-layer neural networks for recognition. This study presents the way that how can an Arabic training and synthetic dataset be created for exemplify the superimposed text in different scene images. For this purpose a dataset of size 10K of cropped images has been created in the detection phase wherein Arabic text was found and 127k Arabic character dataset for the recognition phase. The phase-1 labels were generated from an Arabic corpus of quotes and sentences, which consists of 15kquotes and sentences. This study ensures that Arabic Word Awareness Region Detection (AWARD) approach with high flexibility in identifying complex Arabic text scene images, such as texts that are arbitrarily oriented, curved, or deformed, is used to detect these texts. Our research after experimentations shows that the system has a 91.8% word segmentation accuracy and a 94.2% character recognition accuracy. We believe in the future that the researchers will excel in the field of image processing while treating text images to improve or reduce noise by processing scene images in any language by enhancing the functionality of VGG-16 based model using Neural Networks.

색 분산 특징을 이용한 텍스트 추출에서의 손실된 분산 복원 (Variance Recovery in Text Detection using Color Variance Feature)

  • 최영우;조은숙
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.73-82
    • /
    • 2009
  • 본 논문은 자연이미지에 포함된 텍스트 영역을 찾기 위한 방법으로서 기존에 제안한 색 분산 특징을 이용한 방법에서 분산이 제대로 추출되지 않는 문자 획들에 대한 복원 방법을 제안한다. 이전의 색 분산 특징을 이용한 추출방법에서는 고정된 크기의 수평 및 수직 분간 추출 윈도우를 사용함으로서 문자 획이 두껍거나 긴 경우에는 색 분산이 제대로 추출되지 않는 단점이 있었다. 따라서 본 논문에서는 미 추출된 색 분산을 연결요소 외곽사각형의 기하학적인 정보와 경험적인(Heuristic) 지식을 함께 이용하여 복원하는 방법을 제안한다. 제안한 방법은 다양한 종류의 디지털 카메라와 휴대폰 카메라를 이용해서 취득한 문서 유형의 이미지와 간판, 거리 표지판 등의 자연이미지를 사용하여 테스트 하였으며, 특히 큰 글자를 포함하는 자연이미지에 대해서도 텍스트 추출의 정확성이 향상된 것을 확인할 수 있었다.

A Novel Text Sample Selection Model for Scene Text Detection via Bootstrap Learning

  • Kong, Jun;Sun, Jinhua;Jiang, Min;Hou, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.771-789
    • /
    • 2019
  • Text detection has been a popular research topic in the field of computer vision. It is difficult for prevalent text detection algorithms to avoid the dependence on datasets. To overcome this problem, we proposed a novel unsupervised text detection algorithm inspired by bootstrap learning. Firstly, the text candidate in a novel form of superpixel is proposed to improve the text recall rate by image segmentation. Secondly, we propose a unique text sample selection model (TSSM) to extract text samples from the current image and eliminate database dependency. Specifically, to improve the precision of samples, we combine maximally stable extremal regions (MSERs) and the saliency map to generate sample reference maps with a double threshold scheme. Finally, a multiple kernel boosting method is developed to generate a strong text classifier by combining multiple single kernel SVMs based on the samples selected from TSSM. Experimental results on standard datasets demonstrate that our text detection method is robust to complex backgrounds and multilingual text and shows stable performance on different standard datasets.