• Title/Summary/Keyword: Scan Matching

Search Result 103, Processing Time 0.024 seconds

Direction Augmented Probabilistic Scan Matching for Reliable Localization (신뢰성 높은 위치 인식을 위하여 방향을 고려한 확률적 스캔 매칭 기법)

  • Choi, Min-Yong;Choi, Jin-Woo;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1234-1239
    • /
    • 2011
  • The scan matching is widely used in localization and mapping of mobile robots. This paper presents a probabilistic scan matching method. To improve the performance of the scan matching, a direction of data point is incorporated into the scan matching. The direction of data point is calculated using the line fitted by the neighborhood data. Owing to the incorporation, the performance of the matching was improved. The number of iterations in the scan matching decreased, and the tolerance against a high rotation between scans increased. Based on real data of a laser range finder, experiments verified the performance of the proposed direction augmented probabilistic scan matching algorithm.

A Stereo Matching Technique using Multi-directional Scan-line Optimization and Reliability-based Hole-filling (다중방향성 정합선 최적화와 신뢰도 기반 공백복원을 이용한 스테레오 정합)

  • Baek, Seung-Hae;Park, Soon-Young
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.115-124
    • /
    • 2010
  • Stereo matching techniques are categorized in two major schemes, local and global matching techniques. In global matching schemes, several investigations are introduced, where cost accumulation is performed in multiple matching lines. In this paper, we introduce a new multi-line stereo matching techniques which expands a conventional single-line matching scheme to multiple one. Matching cost is based on simple normalized cross correlation. We expand the scan-line optimization technique to a multi-line scan-line optimization technique. The proposed technique first generates a reliability image, which is iteratively updated based on the previous reliability measure. After some number of iterations, the reliability image is completed by a hole-filling algorithm. The hole-filling algorithm introduces a disparity score table which records the disparity score of the current pixel. The disparity of an empty pixel is determined by comparing the scores of the neighboring pixels. The proposed technique is tested using the Middlebury and CMU stereo images. The error analysis shows that the proposed matching technique yields better performance than using conventional global matching algorithm.

A Fast Full-Search Motion Estimation Algorithm using Adaptive Matching Scans based on Image Complexity (영상 복잡도와 다양한 매칭 스캔을 이용한 고속 전영역 움직임 예측 알고리즘)

  • Kim Jong-Nam
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.949-955
    • /
    • 2005
  • In this Paper, we propose fast block matching algorithm by dividing complex areas based on complexity order of reference block and square sub-block to reduce an amount of computation of full starch(FS) algorithm for fast motion estimation, while keeping the same prediction quality compared with the full search algorithm. By using the fact that matching error is proportional to the gradient of reference block, we reduced unnecessary computations with square sub-block adaptive matching scan based image complexity instead of conventional sequential matching scan and row/column based matching scan. Our algorithm reduces about $30\%$ of computations for block matching error compared with the conventional partial distortion elimination(PDE) algorithm without any prediction quality, and our algorithm will be useful in real-time video coding applications using MPEG-4 AVC or MPEG-2.

A FAST PARTIAL DISTORTION ELIMINATION ALGORITHM USING IMPROVED SUB-BLOCK MATCHING SCAN

  • Kim, Jong-Nam;Ryu, Tae-Kyung;Moon, Kwang-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.278-281
    • /
    • 2009
  • In this paper, we propose a fast partial distortion algorithm using normalized dithering matching scan to get uniform distribution of partial distortion which can reduce only unnecessary computation significantly. Our algorithm is based on normalized dithering order matching scan and calibration of threshold error using LOG value for each sub-block continuously for efficient elimination of unlike candidate blocks while keeping the same prediction quality compared with the full search algorithm. Our algorithm reduces about 60% of computations for block matching error compared with conventional PDE (partial distortion elimination) algorithm without any prediction quality, and our algorithm will be useful to real-time video coding applications using MPEG-4 AVC or MPEG-2.

  • PDF

Landmark Extraction for 3D Human Body Scan Data Using Markerless Matching (마커 없는 매칭을 활용한 3 차원 인체 스캔 데이터의 기준점 추출)

  • Yoon, Dong-Wook;Heo, Nam-Bin;Ko, Hyeong-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.163-167
    • /
    • 2009
  • 3D human body scan technique is known to be practically useful in industrial field as the technique becomes more precise and cheaper. Landmark extraction is essential for full utilization of the scan data. In this paper, we suggest an algorithm for automatic landmark extraction. For this purpose, we perform markerless matching to the target data using PCA analysis and quasi-Newton optimization. Landmarks are extracted from the topology of resulting body.

  • PDF

Effective De-blurring Algorithm for the Vibration Blur of the Interlaced Scan Type Digital Camera (인터레이스 스캔 방식 디지털 카메라 떨림 블러에 대한 효과적 제거 알고리즘)

  • Chon, Jae-Choon;Kim, Hyong-Suk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.559-566
    • /
    • 2005
  • An effective do-blurring algorithm is proposed to remove the blur of the even and the odd line images of the interlaced scan type camera. n the object or the camera moves fast while the interlaced scan type digital camera is acquiring images, blur is often created due to the misalignment between two images of even and odd lines. In this paper, the blurred original image is separated into the even and the odd line images of the half size. Two full sized images are generated using interpolation technique based on these two in ages. Again, these images are signed and combined through the processes of feature extraction, matching, sub-pixel matching, outlier removal, and mosaicking. De-blurring simulations about the images of different camera motions have been done.

Subsequence Matching Under Time Warping in Time-Series Databases : Observation, Optimization, and Performance Results (시계열 데이터베이스에서 타임 워핑 하의 서브시퀀스 매칭 : 관찰, 최적화, 성능 결과)

  • Kim Man-Soon;Kim Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1385-1398
    • /
    • 2004
  • This paper discusses an effective processing of subsequence matching under time warping in time-series databases. Time warping is a trans-formation that enables finding of sequences with similar patterns even when they are of different lengths. Through a preliminary experiment, we first point out that the performance bottleneck of Naive-Scan, a basic method for processing of subsequence matching under time warping, is on the CPU processing step. Then, we propose a novel method that optimizes the CPU processing step of Naive-Scan. The proposed method maximizes the CPU performance by eliminating all the redundant calculations occurring in computing the time warping distance between the query sequence and data subsequences. We formally prove the proposed method does not incur false dismissals and also is the optimal one for processing Naive-Scan. Also, we discuss the we discuss to apply the proposed method to the post-processing step of LB-Scan and ST-Filter, the previous methods for processing of subsequence matching under time warping. Then, we quantitatively verify the performance improvement ef-fects obtained by the proposed method via extensive experiments. The result shows that the performance of all the three previous methods im-proves by employing the proposed method. Especially, Naive-Scan, which is known to show the worst performance, performs much better than LB-Scan as well as ST-Filter in all cases when it employs the proposed method for CPU processing. This result is so meaningful in that the performance inversion among Nive- Scan, LB-Scan, and ST-Filter has occurred by optimizing the CPU processing step, which is their perform-ance bottleneck.

Indoor Navigation of a Skid Steering Mobile Robot Via Friction Compensation and Map Matching (마찰 보상과 지도 정합에 의한 미끄럼 조향 이동로봇의 실내 주행)

  • So, Chang Ju;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.468-472
    • /
    • 2013
  • This paper deals with the indoor localization problem for a SSMR (Skid Steering Mobile Robot) subjected to wheel-ground friction and with one LRF (Laser Range Finder). In order to compensate for some friction effect, a friction related coefficient is estimated by the recursive least square algorithm and appended to the maneuvering command. Also to reduce odometric information based localization errors, the lines are extracted with scan points of LRF and matched with the ones of the corresponding map built in advance. The present friction compensation and scan map matching schemes have been applied to a laboratory SSMR, and experimental results are given to validate the localization performance along an indoor corridor.

Two Degree of Freedom Robust Controller Design of a Seeker Scan-Loop (탐색기 주사루프의 2자유도 강인제어기 설계)

  • Lee, Ho-Pyeong;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.157-165
    • /
    • 1995
  • The new formulation of designing the two degree of freedom(TDF) robust controller is proposed using $H_{\infty}$optimization and model matching method. In this formulation the feedback controller and feedforward controller are designed in a single step using $H_{\infty}$optimization procedure. Roughly speaking, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while the feedforward controller is used to improve the robust model matching properties of the closed loop system. The proposed formulation will be illustrated and evaluated on a seeker scan-loop. And the performances of TDF robust controller are compared with those of the $H_{\infty}$ controller designed using Loop Shaping Design Procedure proposed by McFarlane and Glover.lover.

  • PDF

Adaptive Matching Scan Algorithm Based on Gradient Magnitude and Sub-blocks in Fast Motion Estimation of Full Search (전영역 탐색의 고속 움직임 예측에서 기울기 크기와 부 블록을 이용한 적응 매칭 스캔 알고리즘)

  • 김종남;최태선
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1097-1100
    • /
    • 1999
  • Due to the significant computation of full search in motion estimation, extensive research in fast motion estimation algorithms has been carried out. However, most of the algorithms have the degradation in predicted images compared with the full search algorithm. To reduce an amount of significant computation while keeping the same prediction quality of the full search, we propose a fast block-matching algorithm based on gradient magnitude of reference block without any degradation of predicted image. By using Taylor series expansion, we show that the block matching errors between reference block and candidate block are proportional to the gradient magnitude of matching block. With the derived result, we propose fast full search algorithm with adaptively determined scan direction in the block matching. Experimentally, our proposed algorithm is very efficient in terms of computational speedup and has the smallest computation among all the conventional full search algorithms. Therefore, our algorithm is useful in VLSI implementation of video encoder requiring real-time application.

  • PDF