References
- S. Birchfield and C. Tomasi, “Depth Discontinuities by Pixel-to-pixel Stereo,” ICCV, pp. 1073-1080, 1998.
- Y. Deng and X. Lin, “A Fast Line Segment Based Dense Stereo Algorithm Using Tree Dynamic Programming,” ECCV, Vol.3, pp.201-212, 2006. https://doi.org/10.1007/11744078_16
- F. Felzenszwalb and P. Huttenlocher, “Efficient Belief Propagation for Early Vision,” Computer Vision and Pattern Recognition, Vol.1, pp.261-268, 2004. https://doi.org/10.1109/CVPR.2004.88
- M. Gong and Y. Yang, “Near real-time reliable stereo matching using programmable graphics hardware,” CVPR pp.924-931, 2005. https://doi.org/10.1109/CVPR.2005.246
- M. Heinrichs, V. Rodehorst, and O. Hellwich, “Efficient Semi-Global Matching for Trinocular Stereo,” Photogrammetric Image Analysis, pp.185-190, 2007.
- H. Hirschmüuller, “Accurate and efficient stereo processing by semi-global match-ing and mutual information,” CVPR, pp.807-814, 2005. https://doi.org/10.1109/CVPR.2005.56
- H. Hirschmuuller, “Stereo vision in structured environments by consistent semi-global matching,” CVPR pp.2386-2393, 2006. https://doi.org/10.1109/CVPR.2006.294
- T. Kanade and M. Okutomi, “A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment,” IEEE transactions on pattern analysis and machine intelligence Vol.16, No.9, pp.920-932, 1994. https://doi.org/10.1109/34.310690
- C. Kim, K. M. Lee, B. T. Choi, and S. U. Lee, “A Dense Stereo Matching Using Two-pass Dynamic Programming with Generalized Ground Control Points,” CVPR, pp.1075-1082, 2005. https://doi.org/10.1109/CVPR.2005.22
- A. Klaus, M. Sormann and K. Karner, “Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure,” ICPR Vol.3, pp.15-18, 2006. https://doi.org/10.1109/ICPR.2006.1033
- V. Kolmogorov and R. Zabih, “Computing Visual Correspondence with Occlusions Using Graph Cuts,” ICCV, pp.508-515, 2001. https://doi.org/10.1109/ICCV.2001.937668
- S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, “Temporally consistent re-construction from multiple video streams using enhanced belief propagation,” ICCV, pp.1-8, 2007. https://doi.org/10.1109/ICCV.2007.4409013
- S. Mattoccia, F. Tombari, and L. Di Stefano, “Stereo vision enabling precise border localization within a scanline optimization framework,” ACCV, pp.517-527, 2007.
- http://vision.middlebury.edu/stereo. Middlebury Stereo Evaluation
- P. Mordohai and G. Medioni, “Stereo using monocular cues within the tensor vot-ing framework,” PAMI Vol.28, No.6, pp.968-982, 2006. https://doi.org/10.1109/TPAMI.2006.129
- D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” IJCV, Vol.47, pp.7-42. 2002. https://doi.org/10.1023/A:1014573219977
- J. Sun, Y. Li, S.B. Kang, and H.-Y. Shum, “Symmetric stereo matching for occlu-sion handling,” CVPR Vol.2, pp.399-406, 2005. https://doi.org/10.1109/CVPR.2005.337
- M. C. Sung, S. H. Lee, and N. I. Cho, “Stereo Matching Using Multi-directional Dynamic Programming and Edge Orientations,” ICIP, pp.233-236, 2007. https://doi.org/10.1109/ICIP.2007.4378934
- O. Veksler, “Stereo Correspondence by Dynamic Programming on a Tree,” CVPR, pp.384-390, 2005. https://doi.org/10.1109/CVPR.2005.334
- Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo Matching with Color-weighted Correlation, Hierarchical Belief Propagation and Occlusion Handling,” CVPR, Vol.31, No.3, pp.492-504, 2006. https://doi.org/10.1109/CVPR.2006.292
- Q. Yang, R. Yang, J. Davis, and D. Nist, “Spatial-depth super resolution for range images,” CVPR pp.1-8, 2007. https://doi.org/10.1109/CVPR.2007.383211
- C. Ye, C. Moon, and J. Jeon, “방향성 특징벡터를 이용한 스테레오 정합 기법,” 제어 자동화 시스템공학 논문지, 제13권 제1호, pp.52-57, 2007.
- L. Zitnick and S. B. Kang, “Stereo for Image-based Rendering Using Image Over-segmentation,” IJCV, Vol.75, No.1, pp.49-65, 2007. https://doi.org/10.1007/s11263-006-0018-8