• Title/Summary/Keyword: Scalar curvature

Search Result 189, Processing Time 0.024 seconds

Conformally invariant tensors on hermitian manifolds

  • Matsuo, Koji
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.455-463
    • /
    • 1996
  • In [3] and [4], Kitahara, Pak and the author obtained the conformally invariant tensor $B_0$, which is an algebraic Hermitian analogue of the Weyl conformal curvature tensor W in the Riemannian geometry, by the decomposition of the curvature tensor H of the Hermitian connection and the notion of semi-curvature-like tensors of Tanno (see[7]). In [5], the author defined a conformally invariant tensor $B_0$ on a Hermitian manifold as a modification of $B_0$. Moreover he introduced the notion of local conformal Hermitian-flatness of Hermitian manifolds and proved that the vanishing of this tensor $B_0$ together with some condition for the scalar curvatures is a necessary and sufficient condition for a Hermitian manifold to be locally conformally Hermitian-flat.

  • PDF

OPTIMAL INEQUALITIES FOR THE CASORATI CURVATURES OF SUBMANIFOLDS OF GENERALIZED SPACE FORMS ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTIONS

  • LEE, CHUL WOO;LEE, JAE WON;VILCU, GABRIEL-EDUARD;YOON, DAE WON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1631-1647
    • /
    • 2015
  • In this paper, we prove two optimal inequalities involving the intrinsic scalar curvature and extrinsic Casorati curvature of submanifolds of generalized space forms endowed with a semi-symmetric metric connection. Moreover, we also characterize those submanifolds for which the equality cases hold.

A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS

  • Prasad, Rajendra;Verma, Sandeep Kumar;Kumar, Sumeet
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.669-682
    • /
    • 2019
  • The objective of this paper is to introduce and study Einstein-like para-Kenmotsu manifolds. For a para-Kenmotsu manifold to be Einstein-like, a necessary and sufficient condition in terms of its curvature tensor is obtained. We also obtain the scalar curvature of an Einstein-like para-Kenmotsu manifold. A necessary and sufficient condition for an almost para-contact metric hypersurface of a locally product Riemannian manifold to be para-Kenmotsu is derived and it is shown that the para-Kenmotsu hypersurface of a locally product Riemannian manifold of almost constant curvature is always Einstein.

THE SCHWARZIAN DERIVATIVE AND CONFORMAL TRANSFORMATION ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Sedighi, Faranak
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.873-892
    • /
    • 2020
  • Thurston, in 1986, discovered that the Schwarzian derivative has mysterious properties similar to the curvature on a manifold. After his work, there are several approaches to develop this notion on Riemannian manifolds. Here, a tensor field is identified in the study of global conformal diffeomorphisms on Finsler manifolds as a natural generalization of the Schwarzian derivative. Then, a natural definition of a Mobius mapping on Finsler manifolds is given and its properties are studied. In particular, it is shown that Mobius mappings are mappings that preserve circles and vice versa. Therefore, if a forward geodesically complete Finsler manifold admits a Mobius mapping, then the indicatrix is conformally diffeomorphic to the Euclidean sphere Sn-1 in ℝn. In addition, if a forward geodesically complete absolutely homogeneous Finsler manifold of scalar flag curvature admits a non-trivial change of Mobius mapping, then it is a Riemannian manifold of constant sectional curvature.

SEMI-INVARINAT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING ${\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}=0$ IN A COMPLEX SPACE FORM

  • Ki, U-Hang
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.41-77
    • /
    • 2021
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (��, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ = R(·, ξ)ξ and A(i) be Jacobi operator with respect to the structure vector field ξ and be the second fundamental form in the direction of the unit normal C(i), respectively. Suppose that the third fundamental form t satisfies dt(X, Y ) = 2��g(��X, Y ) for certain scalar ��(≠ 2c)and any vector fields X and Y and at the same time Rξ is ��∇ξξ-parallel, then M is a Hopf hypersurface in Mn(c) provided that it satisfies RξA(1) = A(1)Rξ, RξA(2) = A(2)Rξ and ${\bar{r}}-2(n-1)c{\leq}0$, where ${\bar{r}}$ denotes the scalar curvature of M.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.

2-TYPE HYPERSURFACES SATISFYING ⟨Δx, x - x0⟩ = const.

  • Jang, Changrim
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.643-649
    • /
    • 2018
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigenvectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we proved that a connected 2-type hypersurface M in $E^{n+1}$ whose postion vector x satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle}$, ${\rangle}$ is the usual inner product in $E^{n+1}$, is of null 2-type and has constant mean curvature and scalar curvature.

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

From the Eisenhart Problem to Ricci Solitons in Quaternion Space Forms

  • Praveena, Mundalamane Manjappa;Bagewadi, Channabasappa Shanthappa
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.389-398
    • /
    • 2018
  • In this paper we obtain the condition for the existence of Ricci solitons in nonflat quaternion space form by using Eisenhart problem. Also it is proved that if (g, V, ${\lambda}$) is Ricci soliton then V is solenoidal if and only if it is shrinking, steady and expanding depending upon the sign of scalar curvature. Further it is shown that Ricci soliton in semi-symmetric quaternion space form depends on quaternion sectional curvature c if V is solenoidal.