• 제목/요약/키워드: Scalar curvature

검색결과 191건 처리시간 0.02초

ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS

  • Erken, Irem Kupeli;Murathan, Cengizhan
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1749-1771
    • /
    • 2014
  • In this paper, we introduce slant Riemannian submersions from cosymplectic manifolds onto Riemannian manifolds. We obtain some results on slant Riemannian submersions of a cosymplectic manifold. We also give examples and inequalities between the scalar curvature and squared mean curvature of fibres of such slant submersions in the cases where the characteristic vector field is vertical or horizontal.

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN WARPED PRODUCT MANIFOLDS WITH 2-DIMENSIONAL BASE

  • Lee, Soo-Young
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.75-85
    • /
    • 2018
  • In this paper, we study nonconstant warping functions on an Einstein warped product manifold $M=B{\times}_{f^2}F$ with a warped product metric $g=g_B+f(t)^2g_F$. And we consider a 2-dimensional base manifold B with a metric $g_B=dt^2+(f^{\prime}(t))^2du^2$. As a result, we prove the following: if M is an Einstein warped product manifold with a 2-dimensional base, then there exist generally nonconstant warping functions f(t).

PROJECTIVELY FLAT WARPED PRODUCT RIEMANNIAN MANIFOLDS

  • Oh, Won-Tae;Shin, Seung-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.1039-1044
    • /
    • 2000
  • We investigate the projectively flat warped product manifolds and study the geometric structure of the base space and its fibre. Specifically we find the conditions that the scalar curvature of the base space (B,g) vanishes if and only if f is harmonic on (B,g) and the fibre (F,$\bar{g}$) is a space of constant curvature.

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN LORENTZIAN WARPED PRODUCT MANIFOLDS

  • Jung, Yoon-Tae;Choi, Eun-Hee;Lee, Soo-Young
    • 호남수학학술지
    • /
    • 제40권3호
    • /
    • pp.447-456
    • /
    • 2018
  • In this paper, we consider nonconstant warping functions on Einstein Lorentzian warped product manifolds $M=B{\times}_{f^2}F$ with an 1-dimensional base B which has a negative definite metric. As the results, we discuss that on M the resulting Einstein Lorentzian warped product metric is a future (or past) geodesically complete one outside a compact set.

H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS

  • Park, Kwang-Soon
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.441-460
    • /
    • 2016
  • We introduce the notions of h-v-semi-slant submersions and almost h-v-semi-slant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations, investigate the integrability of distributions, the geometry of foliations, and a decomposition theorem. We find a condition for such submersions to be totally geodesic. We also obtain an inequality of a h-v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and h-v-semi-slant angle. Finally, we give examples of such maps.

ON GENERALIZED WEAKLY SEMI-CONFORMALLY SYMMETRIC MANIFOLDS

  • Hui, Shyamal Kumar;Patra, Akshoy;Patra, Ananta
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.771-782
    • /
    • 2021
  • In this paper we introduce generalized weakly semi-conformally symmetric manifold, a generalization of weakly symmetric manifold. We study some basic properties and obtain the forms of the scalar curvature of such manifold. In the last section an example is given to ensure the existence of such manifold.

SOME RECURRENT PROPERTIES OF LP-SASAKIAN NANIFOLDS

  • Venkatesha, Venkatesha;Somashekhara., P.
    • Korean Journal of Mathematics
    • /
    • 제27권3호
    • /
    • pp.793-801
    • /
    • 2019
  • The aim of the present paper is to study certain recurrent properties of LP-Sasakian manifolds. Here we first describe Ricci ${\eta}$-recurrent LP-Sasakian manifolds. Further we study semi-generalized recurrent and three dimensional locally generalized concircularly ${\phi}$-recurrent LP-Sasakian manifolds and got interesting results.

ON THE V-SEMI-SLANT SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

  • Park, Kwang Soon
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.173-187
    • /
    • 2021
  • In this paper, we deal with the notion of a v-semi-slant submersion from an almost Hermitian manifold onto a Riemannian manifold. We investigate the integrability of distributions, the geometry of foliations, and a decomposition theorem. Given such a map with totally umbilical fibers, we have a condition for the fibers of the map to be minimal. We also obtain an inequality of a proper v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and a v-semi-slant angle. Moreover, we give some examples of such maps and some open problems.

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.