• 제목/요약/키워드: Scaffold tensile strength

검색결과 9건 처리시간 0.025초

챔버 내부의 질소 농도에 따른 3D프린팅 출력물의 인장 강도에 관한 연구 (A Study on Tensile Strength of the 3D Printing Product According to the Nitrogen Concentration of Chamber Inside)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.103-107
    • /
    • 2022
  • Scaffolds are the structures that safely protect sensors in various parts of the body. Because of scaffolds must protect sensors from load, the tensile strength of the scaffolds must be higher than 750 kgf/cm2. Currently, the tensile strength of scaffolds made with the 3d printer is 714 kgf/cm2. We confirm that the tensile strength of the scaffolds increase using air with high nitrogen concentration. In this study, we conducted experiments to find nitrogen concentrations in which the tensile strength of the specimen is higher than 750 kgf/cm2. The nitrogen control device and the nitrogen concentration sensor were installed in the chamber type 3d printer. The nitrogen concentration inside the 3d printer was changed by 5 % from 80 % to 100 %. Specimens of ASTM D 638 standard were produced under changed nitrogen concentration. We measured the tensile strength of specimens. We compared the tensile strength of specimens produced under each nitrogen concentration. We confirmed that when air with nitrogen concentration of 90 % was used, the tensile strength of scaffolds were 762 kgf/cm2.

3D프린팅 공정 중 공기 습도에 따른 출력물의 인장 강도에 관한 연구 (A Study on Tensile Strength of the Product According to Humidity During 3D Printing Process)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.177-181
    • /
    • 2021
  • Scaffolds protect the sensor in the body. Scaffolds are made of a bioabsorbable polymer. The polymer process is sensitive to humidity. Inside of the 3D printer has been improved to control the humidity. Specimens were produced by injection molding and 3D printer. 3D printed specimens were printed under various humidity conditions. We measured tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. We compared tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. Tensile strength of the injection-molded specimen is 557 kgf/cm2. We confirmed tensile strength of the specimen was highest at 741 kgf/cm2 when the humidity was 10 %. We confirmed lower the humidity, higher tensile strength of the polymer product.

열처리에 의해 가교된 다공성 키토산-알지네이트-젤라틴 지지체의 특성 (Characteristics of porous Chitosan-Alginate-Gelatin Scaffold Cross-linked by Heat-treatment)

  • 신병철;최민수;한희동;성하수;박은석;지상철
    • 대한화학회지
    • /
    • 제50권3호
    • /
    • pp.224-231
    • /
    • 2006
  • 소재로 제조된 다공성 지지체의 기계적 물성 향상을 위해서 사용되는 가교제는 세포독성으로 인해 지지체의 생체적합성을 저하시킨다. 본 연구에서 키토산, 알지네이트 및 젤라틴으로 제조된 다공성 지지체는 가교제를 사용하지 않고 열처리에 의해 가교시키고, 가교된 다공성 지지체의 물성을 조사하였다. FT-IR분광분석을 통해 열처리된 다공성 지지체의 가교는 고분자 쇄간의 아미드 또는 에스테르 결합에 의해 형성되었음을 확인하였다. 열처리 다공성 지지체는 100~200m크기의 연결된 공극 구조를 형성하였고, 가교제 처리 다공성 지지체에 비해 수분 흡수력은 2배 이상 향상되었다. 열처리 다공성 지지체의 인장강도는 가교하지 않은 다공성 지지체에 비해 130% 이상 향상되었고, 최대 신장률은 가교처리 다공성 지지체보다 11.3% 향상되었다. 따라서 열처리로 물성을 증가시킨 천연고분자 소재의 다공성 지지체는 생체적합성이 우수한 조직공학용 지지체로서 유용하다.

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

인조고막용 키토산 패치 지지체의 생체역학적 특성 및 독성 평가 (Biomechanical Properties and Cytotoxicity of Chitosan Patch Scaffold for Artificial Eardrum)

  • 정종훈;김장호;정연훈;임애리;임기택;홍지향;정필훈
    • Journal of Biosystems Engineering
    • /
    • 제32권1호
    • /
    • pp.57-62
    • /
    • 2007
  • The objectives of this study were to prepare a new artificial eardrum patch using water-insoluble chitosan for healing the tympanic membrane perforations and to investigate biomechanical properties and cyotoxicity of the chitosan patch scaffold (CPS). Tensile strength and elongation at the rupture point of CPSs were 2.49-74.05 MPa and 0.11-107.06%, respectively. As the biomechanical properties or CPSs varied with the concentration of chitosan and glycerol, the proper conditions for the CPS were found out. SEM analysis showed very smooth and uniform surface of CPSs without pores at x1000. The result of MTT test showed that CPSs had no cytotoxicity.

전기방사법으로 제조한 PU/PEG 복합 지지체의 특성 (Characteristics of PU/PEG Hybrid Scaffolds Prepared by Electrospinning)

  • 설보경;신지연;오가연;이득용;이명현
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.248-255
    • /
    • 2017
  • Polyurethane/polyethylene glycol(PU/PEG) hybrid scaffolds with various concentrations of PEG (0 to 50wt%) were prepared by electrospinning to evaluate the mechanical properties and the biocompatibility of the PU/PEG blend scaffolds. The 12wt% PU/PEG polymers were studied due to the absence of beads. The ultimate tensile strength of 12wt% PU was $8.2{\pm}0.5MPa$. The strength increased to $9.2{\pm}0.7MPa$ when 10% PEG was added to PU. However, the dry and the wet strength of PU/PEG scaffolds began to decrease dramatically when the PEG content was more than 10wt%. No cytotoxicity was observed for all the PU/PEG scaffolds investigated, indicating that the PU/PEG hybrid scaffolds are clinically safe and effective to small-diameter vascular grafts. In addition, the L-929 cells attached and proliferated well on the PU/PEG hybrid scaffolds.

Fabrication and Characterization of Novel Electrospun PVPA/PVA Nanofiber Matrix for Bone Tissue Engineering

  • Franco, Rose-Ann;Nguyen, Thi Hiep;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.51.2-51.2
    • /
    • 2011
  • A novel electrospun nanofiber membrane was fabricated using combined poly (vinylphosphonic acid) (PVPA) and polyvinyl alcohol (PVA) intended for bone tissue engineering applications. PVPA is a proton-conducting polymer used as primer for bone implants and dental cements to prevent corrosion and brush abrasion. The phosphonate groups of PVPA have the ability to crosslink and attach itself to the hydroxyapatite surface facilitating faster integration of the biomaterial to the bone matrix. PVA was combined with PVPA to provide hydrophilicity, biocompatibility and improve its spinnability. To improve its mechanical strength, PVPA/PVA and neat PVA mixtures were combined to produce a multilayer scaffold. The physical and chemical properties of the of the fabricated matrix was investigated by SEM and TEM morphological analyses, tensile strength test, XRD, FT-IR spectra, swelling behavior and biodegradation rates, porosity and contact angle measurements. Biocompatibility was also examined in vitro by cytotoxicity and cell proliferation studies with MTT assay and cell adhesion behavior by SEM and confocal microscopy.

  • PDF

PET 나노섬유 강화 PEI 막의 제조 및 특성화 연구, 그에 따른 유기용매 나노여과막 가능성 검증 (Preparation and Characterization Study of PET Nanofiber-reinforced PEI Membrane, Investigation of the Application of Organic Solvent Nanofiltration Membrane)

  • 홍성배;임광섭;권동준;남상용
    • 접착 및 계면
    • /
    • 제24권1호
    • /
    • pp.17-25
    • /
    • 2023
  • 본 연구는 투명 폐 Polyethylene Terephthalate (PET)병을 재활용하여 지지체를 제조 후에 Polyetherimide (PEI)를 이용하여 친환경적인 유기용매나노여과막 (Organic Solvent Nanofiltration)에 이용하고자 하였다. 제조된 복합막은 먼저, PET 지지체는 전기방사를 통해 제조를 하였으며 이후 내용매성이 우수한 PEI를 이용하여 지지체 위에 캐스팅하였고 비용매 유도상분리(Non-solvent Induced Phase Separation, NIPS) 방법을 이용하여 유기용매나노여과막을 제조하였다. 먼저 막제조에 앞서 제조된 PET 지지체는 모폴로지 분석을 통해 섬유의 직경과 인장강도를 파악하였으며 유기용매나노여과막의 최적 지지체 조건을 확인하였다. 이후 제조된 PET/PEI 복합막은 PEI의 농도에 따른 유기용매나노여과막으로서의 성능을 파악하기 위하여 에탄올에 분자량 697 g/mol을 가지는 Congo red의 제거율을 확인하였으며 최종으로 Congo red의 제거율이 90%이상의 제거율을 가지는 최적의 PET/PEI 복합막을 확인하였다.

가토(家兎) 상악골(上顎骨) 결손부(缺損部)에 수종(數種)의 이종골(異種骨) 이식후(移植後) 치유과정(治癒過程)에 관(關)한 연구(硏究) (An Experimental Study of the Healing Process on Several Heterogenous Bone Grafts in Rabbit Mandible;Histologic and Biometric study)

  • 오희균;류선열
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제11권1호
    • /
    • pp.117-129
    • /
    • 1989
  • The commercial availability of processed heterogenous bone has provided the surgeons with almost unlimited supply, avoidance of additional operation and prevention of the postoperative complications. In addition to these merits, unnecessary bone bank, easy availibility and storage have been achieved. The purpose of this study was to compare and examine the healing capacity of Kiel bone, Pyrost and Osteovit which used as the processed heterografts for the reconstruction of bony defect. Twenty rabbits weighing about 1.7-2.0 Kg were selected and divided into two groups. In experimental group A, the left mandibular defect was allowed to fill with blood, and the right defect was filled with Kiel bone. In experimental group B, the left defect was grafted with Pyrost, and the right with Osteovit. The experimental animals were sacrified after 1, 2, 4 and 8 weeks and the grafted site was studied histologically. To evaluate the strength of healed bone, 2 rabbits from each experimental group and a nonoperated control were sacrified at the 6th week after implantation and used for biometric testing on universal testing machine. The results obtained were as follows : 1. It was considered that these heterogenous bone grafts has feeble or absent immunogenicity since all of them appeared to evoke little inflammatory or forign body reaction. 2. In all experimental groups, new bone formation began from the adjacent region of host bone and extended progressively into the defect sites. New bone was partly formed within the intertrabecular space of the implant and gradually united with the bone that formed at the margin of the host bone. 3. With Pyrost bone formation was rapid and prominent comparing with other graft materials. 4. Osteovit was begun to be absorbed from 2 weeks, and Kiel bone from 4 weeks, however Pyrost was remained to be intact until the end of 8 weeks. 5. As the results of tensile test, the mean values of maximum tensile stress were 1.11${\uparrow}$ $Kgf/mm^{2}$ in Pyrost implanted specimens, 0.85 $Kgf/mm^{2}$ in Osteovit, 0.42 $Kgf/mm^{2}$ in Kiel bone, 0.66 $Kgf/mm^{2}$ in blood filled specimens and 1..13 $Kgf/mm^{2}$ in control. These results indicate that heterogenous bones grafted have little antigenicity to the host tissue, and that they mediate effectively osteoconduction by providing the scaffold for the bone formation. Pyrost and Osteovit appeared to be suitable for the clinical use.

  • PDF