Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Jung, Hyun-Jung (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jae-Jin (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Ahn, Kwang-Duk (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Han, Dong-Keun (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Ju, Young-Min (Biomedical Engineering Program, University of South Florida, 4202 E. Fowler Avenue)
  • Published : 2006.10.31

Abstract

Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

Keywords

References

  1. R. Langer and J. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. M. J. Honda, T. Yada, M. Ueda, and K. Kimata, J. Oral Maxillofac. Surg., 62, 1510 (2004) https://doi.org/10.1016/j.joms.2003.12.042
  3. G. Chen, T. Sato, T. Ushida, R. Hirochika, Y. Shirasaki, N. Ochiai, and T. Tateishi, J. Biomed. Mater. Res., 67, 1170 (2003)
  4. S. W. Kang, O. Jeon, and B. S. Kim, Tissue Eng., 11, 438 (2005) https://doi.org/10.1089/ten.2005.11.438
  5. P. X. Ma and R. Zhang, J. Biomed. Mater. Res., 46, 60 (1999) https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H
  6. M. M. Stevens and J. H. George, Science, 310, 1135 (2005) https://doi.org/10.1126/science.1106587
  7. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng., 11, 101 (2005) https://doi.org/10.1089/ten.2005.11.101
  8. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00635-X
  9. W. Li, R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, and R. S. Tuan, Biomaterials, 26, 599 (2005) https://doi.org/10.1016/j.biomaterials.2004.03.005
  10. K. S. Rho, L. Jeong, G. Lee, B. M. Seo, Y. J. Park, S. D. Hong, S. Roh, J. J. Cho, W. H. Park, and B. M. Min, Biomaterials, 27, 1452 (2006) https://doi.org/10.1016/j.biomaterials.2005.08.004
  11. F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma, and S. Wang, Biomaterials, 25, 1891 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.062
  12. M. H. Ho, D. M. Wang, H. J. Hsieh, H. C. Liu, T. Y. Hsien, J. Y. Lai, and L. T. Hou, Biomaterials, 26, 3197 (2005) https://doi.org/10.1016/j.biomaterials.2004.08.032
  13. F. Yang, C. G. Williams, D. A. Wang, H. Lee, P. N. Manson, and J. Elisseeff, Biomaterials, 26, 5991 (2005) https://doi.org/10.1016/j.biomaterials.2005.03.018
  14. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.045
  15. E. D. Boland, T. A. Telemeco, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, J. Biomed. Mater. Res., 71B, 144 (2004) https://doi.org/10.1002/jbm.b.30105
  16. J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998) https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D
  17. J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala, J. Biomater. Sci. Polym. Ed., 13, 1325 (2002) https://doi.org/10.1163/15685620260449723
  18. Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 24, 3725 (2003) https://doi.org/10.1016/S0142-9612(03)00247-3
  19. H. Chim, J. L. Ong, J.-T. Schantz, D. W. Hutmacher, and C. M. Agrawal, J. Biomed. Mater. Res., 65A, 327 (2003) https://doi.org/10.1002/jbm.a.10478
  20. F. Mwale, H. T. Wang, V. Nelea, L. Luo, J. Antoniou, and M. R. Wertheimer, Biomaterials, 27, 2258 (2006) https://doi.org/10.1016/j.biomaterials.2005.11.006
  21. T. B. F. Woodfield, S. Miot, I. Martin, C. A. van Blitterswijk, and J. Riesle, Biomaterials, 27, 1043 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.032
  22. M. H. Ho, L. T. Hou, C. Y. Tu, H. J. Hsieh, J. Y. Lai, W. J. Chen, and D. M. Wang, Macromol. Biosci., 6, 90 (2006) https://doi.org/10.1002/mabi.200500130
  23. I. Bisson, M. Kosinski, S. Ruault, B. Gupta, J. Hilborn, F. Wurm, and P. Frey, Biomaterials, 23, 3149 (2002) https://doi.org/10.1016/S0142-9612(02)00061-3
  24. L. Buttafoco, N. G. Kolkman, P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes, and J. Feijen, Biomaterials, 27, 724 (2006) https://doi.org/10.1016/j.biomaterials.2005.06.024
  25. C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Biomaterials, 25, 877 (2004) https://doi.org/10.1016/S0142-9612(03)00593-3
  26. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  27. C. H. Lee, H. J. Shin, I. H. Cho, Y.-M. Kang, I. A. Kim, K.- D. Park, and J.-W. Shin, Biomaterials, 26, 1261 (2005) https://doi.org/10.1016/j.biomaterials.2004.04.037
  28. B. Gupta, J. Hilborn, C. Hollenstein, C. Plummer, R. Houriet, and N. Xanthopoulos, J. Appl. Polym. Sci., 78, 1083 (2000) https://doi.org/10.1002/1097-4628(20001031)78:5<1083::AID-APP170>3.0.CO;2-5
  29. J. E. Sanders, S. E. Lamont, A. Karchin, S. L. Golledge, and B. D. Ratner, Biomaterials, 26, 813 (2005) https://doi.org/10.1016/j.biomaterials.2004.03.030
  30. K.-N. Chua, W.-S. Lim, P. Zhang, H. Lu, J. Wen, S. Ramakrishna, K. W. Leong, and H.-Q. Mao, Biomaterials, 26, 2537 (2005) https://doi.org/10.1016/j.biomaterials.2004.07.040
  31. G. Khang, J. H. Choee, J. M. Rhee, and H. B. Lee, J. Appl. Polym. Sci., 85, 1253 (2002) https://doi.org/10.1002/app.10680
  32. K. M. Woo, V. J. Chen, and P. X. Ma, J. Biomed. Mater. Res., 67A, 531 (2003) https://doi.org/10.1002/jbm.a.10098