• Title/Summary/Keyword: tissue engineering

Search Result 1,822, Processing Time 0.039 seconds

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu;Kwon, Yang Woo;Lee, Tae Wook;Park, Gyu Tae;Kim, Jae Ho
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

Cartilage tissue engineering for craniofacial reconstruction

  • Kim, Min-Sook;Kim, Hyung-Kyu;Kim, Deok-Woo
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.392-403
    • /
    • 2020
  • Severe cartilage defects and congenital anomalies affect millions of people and involve considerable medical expenses. Tissue engineering offers many advantages over conventional treatments, as therapy can be tailored to specific defects using abundant bioengineered resources. This article introduces the basic concepts of cartilage tissue engineering and reviews recent progress in the field, with a focus on craniofacial reconstruction and facial aesthetics. The basic concepts of tissue engineering consist of cells, scaffolds, and stimuli. Generally, the cartilage tissue engineering process includes the following steps: harvesting autologous chondrogenic cells, cell expansion, redifferentiation, in vitro incubation with a scaffold, and transfer to patients. Despite the promising prospects of cartilage tissue engineering, problems and challenges still exist due to certain limitations. The limited proliferation of chondrocytes and their tendency to dedifferentiate necessitate further developments in stem cell technology and chondrocyte molecular biology. Progress should be made in designing fully biocompatible scaffolds with a minimal immune response to regenerate tissue effectively

Effects of Three-dimensional Scaffolds on Cell Organization and Tissue Development

  • Yan Li;Yang, Shang-Tian
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.311-325
    • /
    • 2001
  • Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.

  • PDF

Recent Progress in Study and Development of Polymeric Scaffolds for Tissue Regeneration (조직재생을 위한 고분자 지지체의 최근 연구개발 동향)

  • Joung, Yoon-Ki;Park, Ki-Dong;Park, Kwi-Deok;Han, Dong-Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.255-266
    • /
    • 2008
  • In tissue engineering, scaffolds play an important role in the growth of cells to 3-D organs or tissues. For the success of tissue engineering, they should be mimicked to meet the requirements of natural extracellular matrix (ECM) in the body, such as mechanical properties, adhesiveness, porosity, biodegradability, and growth factor release, etc. Contrary to other materials, polymeric materials are adequate to engineer scaffolds for tissue engineering because controlling the structure and the ratio of components and designing various shapes and size are possible. In this review, the importance, major characteristics, processes, and recent examples of polymeric scaffolds for tissue engineering applications are discussed.

Cell-Interactive Polymers for Tissue Engineering

  • Lee, Kuen Yong;Mooney, David J.
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.51-57
    • /
    • 2001
  • Tissue engineering is one exciting approach to treat patients who need a new organ or tissue. A critical element in this approach is the polymer scaffold, as it provides a space for new tissue formation and mimics many roles of natural extra-cellular matrices. In this review, we describe several design parameters of polymer matrices that can significantly affect cellular behavior, as well as various polymers which are frequently used to date or potentially useful in many tissue engineering applications. Interactions between cells and polymer scaffolds, including specific receptor-ligand interactions, physical and degradation feature of the scaffolds, and delivery of soluble factors, should be considered in the design and tailoring of appropriate polymer matrices to be used in tissue engineering applications, as these interactions control the function and structure of engineered tissues.

  • PDF

The Role of Biomechanics in Tissue Engineering (조직공학에서 생체역학의 역할)

  • Park, Kwi-Deok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1458-1460
    • /
    • 2008
  • Tissue engineering is an interdisciplinary field that utilizes the principles of engineering and life sciences toward the creation of biological substitutes. Traditionally, major components of tissue engineering are cells, scaffolds, growth factors and recently biomechanical aspects have been given much attention. A large number of studies have reported that mechanical signals are of particular interest in either encouraging or inhibiting cellular responses. In tissue engineering, cell adhesion is a very important step, because quality of adhesion may determine a cell fate in the future. Elasticity of cell-adhesive substrate is found critical in regulating stem cell differentiation. Cells exert different contractile forces for cell migration, depending on substrate mechanics. Though tissue engineering is very interactive with diverse expertise, for a breakthrough, principles of biomechanics in tissue and cell level needs to be fully understood.

  • PDF

Design Parameters of Polymers for Tissue Engineering Applications

  • Lee, Kuen-Yong
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.277-284
    • /
    • 2005
  • The loss or failure of an organ or tissue can occur because of accident or disease, for which tissue or organ transplantation is a generally accepted treatment. However, this approach is extremely limited due to donor shortage. Tissue engineering is a new and exciting strategy, in which patients who need a new organ or tissue are supplied with a synthetic organ or tissue. In this approach, tissues are engineered using a combination of the patient's own cells and a polymer scaffold. The polymer scaffold potentially mimics many roles of extracellular matrices in the body. Various polymers have been studied and utilized to date in tissue engineering approaches. However, no single polymer has been considered ideal for all types of tissues and approaches. This paper discusses the design parameters of those polymers potentially useful in tissue regeneration.

Recent Applications of Polymeric Biomaterials and Stem Cells in Tissue Engineering and Regenerative Medicine (고분자 생체재료와 줄기세포를 이용한 조직공학과 재생의학의 최신 동향)

  • Lee, Sang Jin;Yoo, James J.;Atala, Anthony
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.113-128
    • /
    • 2014
  • Tissue engineering and regenerative medicine strategies could offer new hope for patients with serious tissue injuries or end-stage organ failure. Scientists are now applying the principles of cell transplantation, material science, and engineering to create biological substitutes that can restore and maintain normal function in diseased or injured tissues/organs. Specifically, creation of engineered tissue construct requires a polymeric biomaterial scaffold that serves as a cell carrier, which would provide structural support until native tissue forms in vivo. Even though the requirements for scaffolds may be different depending on the target applications, a general function of scaffolds that need to be fulfilled is biodegradability, biological and mechanical properties, and temporal structural integrity. The scaffold's internal architecture should also enhance the permeability of nutrients and neovascularization. In addition, the stem cell field is advancing, and new discoveries in tissue engineering and regenerative medicine will lead to new therapeutic strategies. Although use of stem cells is still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This review discusses these tissue engineering and regenerative medicine strategies for various tissues and organs.