• Title/Summary/Keyword: Saturating Actuator

Search Result 18, Processing Time 0.025 seconds

Adaptive Control with Antiwindup Scheme for Relaxed Static Stability(RSS) Missiles with Saturating Actuator

  • Kim, Young-Hwan;Chwa, Dong-Kyung;Im, Ki-Hong;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.4-54
    • /
    • 2001
  • This paper proposes an adaptive control scheme for an autopilot design of Relaxed-Static-Stability(RSS) Missiles with saturating actuator. The feedback linearization controller eliminates nonlinear terms in RSS missile dynamics and makes the entire system linear. But modeling errors, disturbances and the nonlinear mismatch due to input constraints exert a bad influence on the performance of the feedback linearization controller Thus, first, we derive a parametric affine uncertainty model with modeling errors and disturbances. Then an adaptive control law with anti-windup scheme is developed, where the bounds of uncertainties are estimated with adaptive laws. The proposed adaptive controller can remove the bad effects of uncertainties, of disturbances, and of saturating actuator ...

  • PDF

Anti-Jump Resonance Characteristics of Anti-Windup Compensator for Systems with a Saturating Actuator (와인드업 방지 보상기의 점프공진 제거 특성)

  • 장원욱;노현석;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1342-1350
    • /
    • 1993
  • One of the undesirable nonlinear phenomena in feedback control systems is called 'wind up', which is characterized by large overshoot, slow response, and even instability. It is caused by interaction between the integrator in the controller and the saturating actuator. Limit cycle and jump resonance are another nonlinear characteristrics of systems with saturating actuators. Several 'anti-windup' compensators have been developed to prevent some of the aforementioned nonlinear characteristics such as instability and limit cycle, but none has studied the effect of anti-windup compensator on the jump resonance. In this paper, we developed an analytical method to design the compensator to prevent not only limit cycle but also jump resonance. An illustrative example is included to show the compensator eliminates jump resonance effectively.

Performance Enhancement of Control Systems with Saturating Actuators (입력에 포화기를 가진 제어시스템의 성능향상)

  • 박종구;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.5
    • /
    • pp.380-387
    • /
    • 1989
  • The Conventional-Anti-reset-Windup (CAW) structure gives pretty good performance among the conventional strategies that prevent systems from saturation, but there is no systematic way of designing the control systems. Also, it frequently destabilizes the systems. Moreover, the CAW structure cannot be applied when the output of the saturating actuator cannot be measured. Therefore the CAW structure is modified to accommodate this situation. An effective designing method is proposed to give better performance of the control system. The stability of the control system is also considered. The usefulness of the proposed method is shown by applying this method to a few examples.

  • PDF

Robust stabilization of uncertain time-delay systems with saturating actuator (포화 구동기를 갖는 시간 지연 시스템의 제어기 설계)

  • Cho, H.J.;Park, Ju-H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.702-704
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for uncertain time-delay systems with saturating actuator. We propose a state feedback controller which maximizes the delay bound for guaranteeing stability of the system. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criterion is represented in terms of LMIs, which can be solved by various efficient convex optimization algorithm. Numerical examples are given to illustrate our main method.

  • PDF

A novel anti-windup compensation for systems with saturating actuator (포화 요소가 있는 계를 위한 와인드업 방지 보상 방법)

  • 장원욱;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.299-304
    • /
    • 1991
  • A novel approach based on a nonlinear compensator is proposed to prevent 'windup', which is caused by the saturation of the actuator and the integration action of the controller. The anti-windup compensator is located between the conventional linear controller, designed neglecting the saturation, and the actuator. It was proven based on the describing function method that, if the closed loop control systems are stable assuming no saturation, then there exist a range of compensator gain which prevents any limit-cycle and hence, guarantees the system stability. The computer simulation results show that the compensator proposed in the manuscript can eliminate unstable limit cycle and improve the transient response.

  • PDF

H Control of Time-Delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간 시연 선형 시스템의 H 제어)

  • Song, Yong-Heui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1464-1470
    • /
    • 2010
  • In this paper, we consider the $H_{\infty}$ control of time-delayed linear systems with saturating actuators. The considered time-delay is a time-varying one having bounds on magnitude and time-derivative, and the control permits the predetermined degree of saturation. Based on two modified Lyapunov-Krasovskii(L-K) functionals, we derive a $H_{\infty}$ control in the form of linear matrix inequalities(LMI) having three non-convex design parameters. The result is dependent on the characteristics of time-delay, predetermined degree of saturation level, and bound of disturbance. Finally, we give a comparative example to show the effectiveness and usefulness of our result.

$H_{\infty}$ Controller Design of Linear Systems with Saturating Actuators (포화 구동기를 갖는 선형 시스템의 $H_{\infty}$ 제어기 설계)

  • Cho, Hyon-Chol;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.494-496
    • /
    • 1999
  • In this paper, we consider the design of a state feedback $H_{\infty}$ controller for uncertain linear systems with saturating actuators. We consider a general saturating actuator and employ the additive decomposition to deal with it effectively. And the considered uncertainty is the unstructured uncertainty which is only known its norm bound. Based on Linear Matrix Inequality(LMI) techniques, we present a condition on designing a controller that guarantees the $L_2$ gain, from the noise to the output, is not greater than a given value. A controller is obtained by checking the feasibility of three LMI's, and this can be easily done by well-known control package. Finally, we show the usefulness of our result by a numerical example.

  • PDF

$H_{\infty}$ Controller Design of Linear Systems with Saturating Actuators (포화 구동기를 갖는 선형 시스템의 $H_{\infty}$ 제어기 설계)

  • Cho, Hyun-Chol;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.596-598
    • /
    • 1999
  • In this paper, we consider the design of a state feedback $H_{\infty}$ controller for linear systems with saturating actuators. We consider a general saturating actuator and employ the multiplicative decomposition to deal with it effectively. Based on Linear Matrix Inequality (LMI) techniques, we present a condition on designing a controller that guarantees the $L_2$ gain, from the noise to the output, is not greater than a given value. A controller is obtained by checking the feasibility of three LMI's, and this can be easily done by well-known control package. Finally, we show the usefulness of our result by a numerical example.

  • PDF

[ $H_{\infty}$ ] Tracking Control of Time-delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간지연 선형시스템의 $H_{\infty}$ 추종 제어기)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.668-676
    • /
    • 2008
  • In this paper, we considered the $H_{\infty}$ tracking control for time-delayed linear systems with saturating actuators. The considered time delay is a time varying one having bounded magnitude and rate, and the considered tracking reference is a general one only known its bounds of magnitude and rate. First, we have converted the $H_{\infty}$ tracking control problem into an equivalent $H_{\infty}$ disturbance attenuation problem using two steps of transformations. Next, based on a new Lyapunov-Krasovskii functional, we have derived the result in the form of LMI with two non-convex parameters. Finally, by numerical examples, we have shown the usefulness and effectiveness of our result.

Design of H$\infty$ tracking control for linear systems with saturating actuators (포화구동기를 갖는 선형 시스템의 H$\infty$ 추종 제어기 설계)

  • Yi Yearn-Gui;Kim Myoung-Soon;Kim Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.235-242
    • /
    • 2005
  • In this paper, we consider the H$\infty$ tracking control of linear system with a limited actuator capacity. The considered reference is a general time-varying one with bounded magnitude and rate. By adopting a similarity transform and a new sto variable, we convert the original system equation to new one which has a tracking error as a part of the new state variable. First, we obtain a result on the low-gained H$\infty$ tracking control which never permits the actuator saturation. Next, we give a result on scheduled H$\infty$ tracking control which uses the actuator capacity more effectively. All results are in the form of linear matrix inequalities(LMI) which can be easily checked their feasibility. Finally, we give a numerical example to show the validity and usefulness of our results.