• 제목/요약/키워드: Saturated Porous Media

검색결과 74건 처리시간 0.019초

포화 다공질 매체의 Arbitrary Lagrangian Eulerian (ALE) 정식화 (Arbitrary Lagrangian Eulerian (ALE) Formulations of Saturated Porous Media)

  • 박대효;정소찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.235-242
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects such as flow of the fluids or thermodynanical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of the solids and the fluids. In this work, governing equations of porous media based on ALE description are obtained from governing equations in frame of updated Lagrangian description. Then, weak forms of these equations are derived using arbitrary weighting functions.

  • PDF

함수다공질층의 진공건조에 관한 실험적 연구 (Ⅰ) (An Experimental Study on Vacuum Drying of Water-Saturated Porous Media)

  • 박형진;김경근;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.68-75
    • /
    • 1996
  • The vacuum drying characteristics of water-saturated porous media were studied experimentally. The water-saturated porous media, water-saturated sand layer, was heated by the isothermal bottom wall of the rectangular vessel. The vacuum drying rate and temperature distribution of the sand layer were measured and calculated under a variety of conditions of heated wall temperature, vacuum rate, and thickness of the test material. It was found that the drying rate due to the heat and mass teansfer is greatly influenced by the heated wall temperature, vacuum rate, and thickness of the test material.

  • PDF

포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화 (Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description)

  • 박대효;정소찬;김원철
    • 한국지반환경공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.5-10
    • /
    • 2003
  • 다공질 매체 속의 내부 구조를 이루고 있는 고체 부분과 유체 부분은 서로 다른 재료특성을 가지는 물체들로 구성되어 있고 각 구성물들은 서로 다른 물리적 성질과 화학적 성질을 가지면서 서로 다른 상대 속도를 가지고 이동하기 때문에 포화된 다공질 매체의 구조적 변형 거동을 해석하는 것은 매우 복잡하다. 변형 거동에 영향을 주는 여러 가지 복합적인 요인들이 고려된 다공질 매체의 변형 거동을 해석하고 규명하기 위하여 Arbitrary Lagrangian Eulerian(ALE) 정식화가 이루어진 구성방정식을 세워야 할 필요가 있다. ALE 정식화는 Lagrangian 요소와 Eulerian 요소의 장점을 최대화 시키고 단점을 최소화 시키는 것에 주안점을 두기 때문에 고체 부분과 유체 부분을 함께 고려해야 하는 다공질 매체의 변형 거동을 해석하는데 있어서 적합한 방법이라고 할 수 있다. 그렇기 때문에 여기서는 포화된 다공질 매체의 보존 법칙들에 대한 ALE 정식화가 이루어진다. 고체 부분과 유체 부분의 질량 보존 법칙에 대하여 ALE 정식화가 이루어진 식이 각각 표현되고 다공질 매체 전체에 대한 운동량 보존 법칙이 표현된다.

  • PDF

Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation

  • Wang, Dongdong;Xie, Pinkang;Lu, Hongsheng
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.107-125
    • /
    • 2013
  • A strain smoothing meshfree formulation with stabilized conforming nodal integration is presented for modeling the consolidation process in saturated porous media. In the present method, nodal strain smoothing is consistently introduced into the meshfree approximation of strain and pore pressure gradient variables associated with the saturated porous media. Meanwhile, in order to achieve a consistent numerical implementation, a smoothing approximation of the meshfree shape function within a nodal representative domain is also proposed in the stiffness construction. The resulting discrete system of equations is all expressed in smoothed nodal measures that are very efficient for numerical evaluation. Subsequently the space-time fully discrete equations are further established by the generalized trapezoidal rule for time integration. The effectiveness of the proposed meshfree consolidation analysis method is systematically illustrated by several benchmark problems.

An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity

  • Shimizu, Yuma;Khayyer, Abbas;Gotoh, Hitoshi
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.63-86
    • /
    • 2022
  • A refined projection-based purely Lagrangian meshfree method is presented towards reliable numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with incorporation of volume fraction. These principal equations of mixture are discretized in the context of Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), resulting in modified source term. The linear and nonlinear force terms are included in momentum equation to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical examples including the interactions between fluid flow and saturated/unsaturated porous media of uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of particle volumes and regular distributions of particles at the interface between fluid and porous media.

Finite Element Formulation using Arbitrary Lagrangian Eulerian Method for Saturated Porous Media

  • Park, Taehyo;Jung, Sochan
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 2003
  • Porous media consist of physically and chemically different materials and have an extremely complicated behavior due to the different material properties of each of its constituents. In addition, the internal structure of porous media has generally a complex geometry that makes the description of its mechanical behavior quite complex. Thus, in order to describe and clarify the deformation behavior of porous media, constitutive models for deformation of porous media coupling several effects such as flow of fluids of thermodynamical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian methods, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of solids and fluids. First of all, governing equations for saturated porous media based on ALE description are derived. Then, weak forms of these equations are obtained in order to implement numerical method using finite element method. Finally, Petrov-Galerkin method Is applied to develop finite element formulation.

  • PDF

Two-scale approaches for fracture in fluid-saturated porous media

  • de Borst, Rene;Rethore, Julien;Abellan, Marie-Angele
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.83-101
    • /
    • 2008
  • A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton-Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

장방형내 함수 다공성 물질의 동결거동에 관한 실험적 연구 (An Experimental study on the Freezing Phenomena of Saturated Porous Media in a Rectangular Cavity)

  • 김병철;김종일;김진흥
    • 설비공학논문집
    • /
    • 제3권5호
    • /
    • pp.386-394
    • /
    • 1991
  • Freezing of saturated porous media contained in a rectangular cavity has been studied experimentally. Water and different diameter glass beads consitituted the liquid and porous media. Solidification front shape, the effects of bead diameter and initial liquid temperature was investigated. When the hot wall temperature was below $4^{\circ}C$, the freezing rate was higher at the top than at the bottom due to the density inversion, but with increasing the hot wall temperature the freezing rate at the top was effected by the liquid temperature and was lower than at the bottom. With increasing the bead diameter, the difference of freezing rate between top and bottom was increased and depends on thermal conductivity. When the liquid temperature was low in the beginning, the freezing rate was high, but with increasing the time almost the same with those of high temperature liquid.

  • PDF

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.

포화된 다공성매체에서 파동의 전파특성 I. 이론해의 유도 (Wave Propagation Characteristics in Saturated Porous Media I. Theoretical Solution)

  • 김선훈;김광진
    • 한국전산구조공학회논문집
    • /
    • 제20권2호
    • /
    • pp.95-103
    • /
    • 2007
  • 본 논문에서는 포화된 다공성매체에서 파동의 전파속도와 감쇠를 구할 수 있는 해석적 이론해를 유도하여 제시하였다. 이론해의 유도를 위하여 압축성의 고체입자와 간극수를 고려하는 완전 연계 Field모델을 사용하였다. 완전 포화된 다공성 매체의 해석을 위한 공학적인 접근방법이 채택되었으며, 균질 영역에서 1차원 파동의 전파를 위한 이론해가 유도되었다. 본 논문에서 유도한 이론해는 고체입자의 압축성, 간극수의 압축성, 다공성입자의 변형, 공간의 감쇠(Spatial damping) 등을 고려할 수 있어 매우 다양하게 사용될 수 있다. 또한 다양한 지반체에서 두 가지 종류의 파속(Wavespeed)과 감쇠계수를 계산하는데 이용 가능하다. 본 논문에서 제시한 이론해를 전산코드화하여 파동의 전파속도와 감쇠에 대한 파라미터연구를 수행한 결과는 본 연구의 II부에 제시할 예정이다.