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Finite Element Formulation using Arbitrary Lagrangian Eulerian
Method for Saturated Porous Media

Park, Taehyo" and Jung, Sochan™

ABSTRACT

Porous media consist of physically and chemically different materials and have an extremely
complicated behavior due to the different material properties of each of its constituents. In addition, the
internal structure of porous media has generally a complex geometry that makes the description of its
mechanical behavior quite complex. Thus, in order to describe and clarify the deformation behavior of
porous media, constitutive models for deformation of porous media coupling several effects such as flow
of fluids of thermodynamical change need to be developed in frame of Arbitrary Lagrangian Eulerian
(ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and
Eulerian methods, and to minimize the disadvantages. Therefore, this method is appropriate for the
analysis of porous media that are considered for the behavior of solids and fluids. First of all,
governing equations for saturated porous media based on ALE description are derived. Then, weak
forms of these equations are obtained in order to implement numerical method using finite element

method. Finally, Petrov—-Galerkin method is applied to develop finite element formulation.

1. Introduction

In order to describe the behavior of porous media, there have been many works focusing on
consoclidation and other phenomena in porous media. The basic equations of motion for porous media in
quasi-static state were first established in 1941 by Biot, and derivations with some modifications and
numerical schemes for compressible, incompressible fluids are introduced by Zienkiewicz and Shiomi
(1984). In the work of Schrefler and Xiaoyong (1993), a fully coupled model is developed to simulate the
slow transient phenomena involving flow of water and air in deforming porous media. In addition, there
have been a lot of works concerning strain localization phenomenon. For modeling localized material
failure, the work by Larsson and Runesson (1996) is proposed to embed the localization band based on
regularized discontinuity, and a finite element furmulation for capturing strong discontinuities in fiuid-
saturated porous media is developed by Steinmann (1999).

Although many researches for porous media have been performed so far, the researches have been
focused on only solid phase or fluid phase. They seem to have limitations to be exact researches,
because porous media have the internal structure and both solids and fluids should be considered
together. Therefore Arbitrary Lagrangian Eulerian (ALE) method is appropriate for the analysis of the
deformation behavior for porous media and Ale method is used in this work. Since ALE method in
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continuum mechanics was firstly researched in fluid dynamics problems, ALE method has been widely
used for various problems of non-linear solid mechanics by many researchers (Benson, 1989; Ghosh
and Kikuchi, 1991). Recently, ALE finite element formulations for finite strain elasticity and plasticity
problems are developed by Love (2000).

Governing equations for saturated porous media based on ALE description are obtained. Then, weak
forms are represented in order to implement numerical method using finite element method. In addition,
Petrov-Galerkin method is necessarily applied to develop finite element formulation, in order to

overcome numerical instabilities caused by convective terms in ALE equations.
2. Governing Equations for Saturated Porous Media

Governing equations are obtained from the work of Park and Jung (2003). The mass balance equation

of the liquid phase is obtained as follows

(a]gsn +_K’_l;) lgtw +adivv’ +diV{;le—(—gradpw +pw(g_aw))} =0 )

where p*, p", a*, K", u” is pressure, density, acceleration, bulk modulus, dynamic viscosity of

the liquid phase, respectively, « is Biot’s constant, and n is porosity. In addition, v°', K° is
velocity, bulk modulus of the solid phase, respectively, K is the permeability tensor of the medium, and

g is the external momentum supply related to gravitational effects.

Next, the linear momentum balance equation for the whole multiphase medium is obtained as follows
dive + pg— pa* =0 2

where @ is total stress tensor acting on a unit area of a multiphase medium, a° is the solid phase

acceleration, and the averaged density of the multiphase medium p is given as follows
P =(1—n)p‘ +np"* (3)

3. Weak forms

For finite element analysis, governing equations can be written in their weak forms. In addition, the

initial and boundary conditions are necessary to be given. The initial conditions of solid displacements
¥ and liquid pressures pw in domain of interest 2 and boundary of interest I' at time £ =0 are

given by
u=u,, p’=p’ in Q andon I (4a,b)

On the one hand, the imposed boundary conditions for external displacements W and tractions t for
the displacement field are given as follows.

u=tdon I, t=¢ on I'? (5a,b)

where I, UI'7 =T, the symbol tilde “X ” stands for the imposed value on boundary, and “x”
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indicates just an arbitrary character.
On the other hand, the imposed boundary conditions for liquid pressures p™ and fluxes q" normal to

the boundary for the pressure field are given as follows.
w ~w k w w q
p'=p" ol p —( gradp” + p (g—a ))-n=q on I'/ (6a,b)
Y7,

where I, UI'7 =I" and n is the unit vector in the normal direction to the boundary I". Since flux
means the volume of fluid that passes through a given area per unit time, condition (6) can be from the
linear momentum balance equation for each fluid phase (Park and Jung, 2003).

In order to classify weighting functions, the symbol “X"” is used. Applying flux boundary condition (6)

and weighting functions W, W into Eq. (1), one obtains as follows

J.w{dlv(: (-gradp” + p (g—aw))]+adivv‘+(aK—sn+K )D” }dQ

Dt

w

+ IW[ - (- gradp” + p"(g~a ))-n—%}dl“:O

It may be assumed that the boundary condition (6) is satisfied by the choice of the approximation of the
weighting functions. Since there is liquid flow in the representative volume element of porous media and

pressures are applied to the domain €2, the choice of the weighting functions is limited as follows
w=0onTI,, W=-w on I’ (8a,b)

Green theorem applied to the first term in Eq. (7) and substitution Eq. (8) into Eq. (7) yield the following
relation

j.(dlvw): (gradp )dQ jleW)—— p (g a )dQ+ Iw(adlvv )dQ

. jw[

i ©
j 2P0+ jwq—dr=o
Dt P

w

When the ALE method is enforced to Eq. (9), a" in the second term and

in the fourth term in

Dt
Eq. (9) are obtained as follows
w Dvw aVW(X;t) w w w
a’ = Dr Py +gradv”-c=vj +gradv”.c (10)
Dpw — apw(X)t) w w w
r - o +gradp” -¢ = pj, +gradp” -¢ (11)

where € is the convective velocity vector and is the difference between the material velocity vector
and the mesh velocity vector.
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Therefore, introduction Egs. (10) and (11) into Eq. (9) vields the following relation. Eq. (12) is the weak
form for mass balance equation for the liquid phase.

Q

f(divw% (gradpw)dQ - J'(divw)% P gdQ+ j(divw)% pw(v:‘,’[zl + gradv” ~c)dQ
Q Q

(12)
a—

KS

. n n w w et
+ jw(ad1vv’)dQ+ jw( +——;)(p,,{l]+gradp -c)dQ+ qu—wdf‘:O
Q Q K re p
In order to represent other weighting functions, the symbo! “*” and “X” are used. Applying traction
boundary condition (5) and other weighting functions W', W' into Eq. (2), one obtains as follows

[w*(divo + pg)dQ - [w'pa*dQ+ [w"(t-T)ar =0 (13)
Q Q

rs
It may be assumed that the boundary condition (5) is satisfied by the choice of the approximation of the
weighting functions. Since there are solid deformation and liquid flow in the representative volume

element of porous media and displacements are related to the domain €, the choice of the weighting

functions is limited as follows
w=0onT,, W =-w" onl/ (14a,b)

Green theorem applied to the first term in Eq. (13) and substitution Eq. (14) into (13) yield the following
relation

- fldivw" )o@+ [w' pgdQ~ [w" pa'dQ+ [w'Tdr =0 (15)
Q Q Q e

When the ALE method is enforced to Eq. (15), @' in the third term in Eq. (15) is obtained as follows

s Dvs avs(X)t) s s s
a =E=T+gradv ‘€= Vi +gradv’ -c (16)

Finally, introduction Eq. (16) into Eq. (15) yvields the following relation. Eq. (17) is the weak form for
linear momentum equation for the whole multiphase medium

Q

I(divw‘)on = Iw'pg dQ - Iw‘p(vf,[x] + gradv’ ~c)a‘dQ + jw'?dl“ (17
Q Q %

4. Finite Element Formulation

The following equations are represented together with vector notation and matrix symbolic notation.

Voigt notation is introduced from following relations, which means any other conversion of symmetric
higher order tensors to column matrices. Column matrices are represented as brace notation { }
denoted by letters enclosed within braces, In addition, row matrices or rectangular matrices are
represented as bracket notation [ ] denoted by letters enclosed within brackets.

The fourth term in Eq. (12) can be obtained as follows
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=4 = "3 (19a,b)
{Io} O$ , [5] _(?_ ) 0 a
0 ox, Ox
0 0 _?L _.a_
L Ox, Ox,
o, 2
| Ox, Ox, |

Substituting Eq. (18) into Eq. (12) and using differential operator [5] gradient operator V, divergence
operator V7, Eq. (12) is obtained as follows

fintv E‘j]<vp N A o A P R S

Q

. (20)
+j[w J ] ol }dmj[w]’[%+fn;J(p;[x]+va-{c})dQ+ j[w]’q—wdr=o
a re P
where
Vo [i o i} @
Ox, Ox, Ox,

Moreover, using differential operator matrix [6] Eq. (17) is obtained as follows

j[w‘]T[a]T {a}dQ = j[w]’ p{g}dQ - ﬂw]’ p({vf,[x]}+ V{v’ } {c})dQ + j{w }T {?}dI’ (22)

Q Q Q e

When Galerkin finite element formulation is applied to equations in ALE description, numerical
instabilities are encountered because of convective terms in material time derivatives. In order to
overcome such numerical instabilities, Petrov—-Galerkin finite element formulation should be introduced.
In Petrov-Galerkin formulation, the trial and test shape functions differ (Belytschko et al., 2000).
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Displacements {u} and pore pressure pw as unknown field variables are interpolated with nodal

values, and convective velocity {c} can be obtained as follows

u}= [N Jue} (X(f) ) "(t)N"(E) (23a,b)
p ‘[N"]{P bop prEeN? () (24a,b)
{e}=[N)({v}- {}) (x(E) t) c )NV, (E)=lv,()-%, 0N E) (25a.0)

where I denotes I th node.
In order to classify shape functions, the symbol bar “X ” is used. Test shape functions for the pore

pressure and displacement are denoted by [ﬁ" ] and [ﬁ"_l respectively.

[N7])=[N?}+ ole}- VNP, N7 = N7 4 N2, (26a,b)
[N]= [NeJ e} v[Ne ], Mo = N eV (27a,b)
where T denotes stabilization parameter, and j indicates the tensorial index.

The material time derivative of pore pressure p” in ALE description can be interpolated as follows

Dp” op; w
2" b5 = 2 o)) 97 @)1 ) e

The third term V{V"’} in Eq. (20) and the second term V{vs} in Eq. (22) can vanish because of slow

deformation and flow from basic assumptions. In addition, if high-frequency dynamic phenomena are not

2
considered, —i—} and —{—} can be equal to 6{ } (Zienkiewicz et al., 1990).

In Eq. (20), substitution [w] into [N” ] as test shape function, and introduction of [N” J and [N"] as

trial shape functions yield the following relation

I\ k]V[w]{ “Jaa- o]y K] .
I(V[N” )’ [k] [Nu]J_}dQ+ j'[NP]’a 7 [o]N] i_} i -
+I[Np]r( )(—{—}[N” N Jfp” }jdgu j[NP]’ ¢ oo

In Eq. (22), substitution [w‘] into [ﬁ"] as test shape function and introduction of [N"] as trial shape

KW
function yield the following relation

[(el ) thaa= v - T obv P haos [T e )
Q Q Q rd

Eq. (29) can be represented with matrix symbolic forms as follows and Eq. (31) is finite element
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formulation for mass balance for the liquid phase.

)+ e} ol2 s o 2L pg2le) ) o

ot
where the permeability matrix [H] the convective velocity matrix [C] the first connecting matrix

[Q] the seepage matrix [G] the compressibility matrix [S] and the flow vector {"} are

respectively shown as follows

[H]= J(V[’NP])’%‘-}V[NP]dQ [cl= j[‘ﬁ"]’(a*ﬂ—”—j{c}-v[ rla (32.0)

: K* K"
le]= f [T ot} ol Jee . [6]= (!(V[ﬁ”])r%wlpw[ “Jao (33a,b)

Bl T[22 ki ot B g (T £ i

In Eq. (30), the total stress {0} can be equal to {o"}—a{lo}pw using the effective stress {0"}

(Zienkiewicz and Shiomi, 1984), and one obtains as follows

1615 ol oIV )
[T o [T i, T b

(35)

Eq. (35) can be represented with matrix symbolic forms as follows and Eq. (36) is finite element
formulation for linear momentum balance for the whole mixture.

[lfolan-rfp-}o a1 2L 6

where the differential shape function matrix [B] the second connecting matrix [R] the mass matrix

[M] and the external load vector {f“} are respectively shown as follows

B)=(olN]) . [R]= Qj Bl {1, }[N? |do (37a,0)
M= fIwFolvlae . fre)- J[N"]’ p{g}dmr[[ﬁ“]’{?}df (382

5. Conclusion

ALE method is used to maximize the advantage and minimize the disadvantage of Lagrangian and
Eulerian elements in Lagrangian and Eulerian methods. In the study of porous media, the internal

structure should be considered, which consists of a solid phase as well as closed and open pores. Since
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the internal structure has materials such as solids and fluids moving with a relative velocity, ALE
method is appropriate for the analysis of the deformation behavior for porous media. For this reason,
governing equations for saturated porous media with some assumptions are obtained with the frame of
ALE description in this work. Weak forms are represented in order to implement numerical method using
finite element method and Petrov-Galerkin method is necessarily applied to develop finite element
formulation, because of avoiding numerical instabilities caused by convective terms in ALE equations.
After numerical implementation, the numerical results will be verified with existing practical data in the

forthcoming paper.
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