• Title/Summary/Keyword: Satellite based augmentation system (SBAS)

Search Result 70, Processing Time 0.03 seconds

Development of Localizer Performance with Vertical Guidance Instrument Approach Procedure on Runway 18 in Ulsan Airport (울산공항 활주로 18 LPV 계기접근절차 개발)

  • Hyunsoo Cho;Eunjung, Kim;Sung-Yeob Kim;Myeongsik, Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.594-600
    • /
    • 2024
  • With the operation of the Korean satellite-based augmentation System (KASS), it has become possible to develop and implement localizer performance with vertical guidance (LPV) instrument approach procedures. In this study, we developed an LPV procedure for Runway 18 at Ulsan Airport, where the installation of an instrument landing system (ILS) is unable due to obstacles, and examined the potential reduction in flight cancellations. The study results suggest that, when developing an LPV instrument approach procedure, the decision altitude would be 380 feet, and the visibility minimum would be 1,200 meters. Consequently, it is expected that flight cancellations for Runway 18, based on 2023 cancellation data, could be reduced by 92% under the given visibility and ceiling conditions if LPV instrument approach procedure is developed. Therefore, the development and operation of the LPV instrument approach procedure for Runway 18 at Ulsan Airport is deemed essential.

Performance Analysis of Ionospheric Delay Estimation for Multi-Constellation WA-DGNSS According to the Number of Reference Stations (기준국 수에 따른 다중 위성항법 광역보정시스템의 전리층 지연 추정 성능 분석)

  • Kim, Dong-Uk;Han, Deok-Hwa;Yun, Ho;Kee, Chang-Don;Seo, Seung-Woo;Park, Heung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.260-267
    • /
    • 2014
  • For the purpose of improving the accuracy of Wide Area Differential GNSS (WA-DGNSS), estimation performance of ionospheric delay error which has a great impact on GPS error sources should be enhanced. This paper applied multi-constellation GNSS which represents GPS in USA, GLONASS in Russia, and Galileo in Europe to WA-DGNSS algorithm in order to improve performance of ionospheric delay estimation. Furthermore, we conducted simulation to analyze ionospheric delay estimation performance in Korean region by increasing the number of reference stations. Consequently, using multi-constellation GNSS to improve performance of ionospheric delay estimation is more effective than increasing the number of reference stations in spite of similar number of measurements which are in use for estimation. We expect this result can contribute to improvement for ionospheric delay estimation performance of single-frequency SBAS (Satellite Based Augmentation System) user.

PSO-SAPARB Algorithm applied to a VTOL Aircraft Longitudinal Dynamics Controller Design and a Study on the KASS (수직이착륙기 종축 제어기 설계에 적용된 입자군집 최적화 알고리즘과 KASS 시스템에 대한 고찰)

  • Lee, ByungSeok;Choi, Jong Yeoun;Heo, Moon-Beom;Nam, Gi-Wook;Lee, Joon Hwa
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.12-19
    • /
    • 2016
  • In the case of hard problems to find solutions or complx combination problems, there are various optimization algorithms that are used to solve the problem. Among these optimization algorithms, the representative of the optimization algorithm created by imitating the behavior patterns of the organism is the PSO (Particle Swarm Optimization) algorithm. Since the PSO algorithm is easily implemented, and has superior performance, the PSO algorithm has been used in many fields, and has been applied. In particular, PSO-SAPARB (PSO with Swarm Arrangement, Parameter Adjustment and Reflective Boundary) algorithm is an advanced PSO algorithm created to complement the shortcomings of PSO algorithm. In this paper, this PSO-SAPARB algorithm was applied to the longitudinal controller design of a VTOL (Vertical Take-Off and Landing) aircraft that has the advantages of fixed-wing aircraft and rotorcraft among drones which has attracted attention in the field of UAVs. Also, through the introduction and performance of the Korean SBAS (Satellite Based Augmentation System) named KASS (Korea Augmentation Satellite System) which is being developed currently, this paper deals with the availability of algorithm such as the PSO-SAPARB.

Pseudolite-based Wide Area Differential GPS (WA-DGPS) Development and Primary Results (의사위성 기반 광역보정시스템(WA-DGPS) 구축 기술개발 및 성과)

  • Park, Hwang-Hun;Jo, Hak-Hyeon;Yun, Ho;Kee, Changdon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.263-267
    • /
    • 2013
  • This paper describes the progress and the plan of 'Wide Area Differential GPS (WA-DGPS) Development' project supported by Korean Ministry of Oceans and Fisheries. The project develops the main algorithms of the WA-DGPS which guarantees the improved accuracy, availability, and integrity all over the Korean peninsula. After the establishment of WA-DGPS ground infrastructure system, a real-time demonstration using pseudolite installed on the ground will be conducted in the final year. Also, the development of Korean Satellite-based Augmentation System (SBAS) is expected to be started from 2014, and the algorithms and the results in the WA-DGPS project will be used in the SBAS development.

A Feasibility Test on the DGPS by Correction Projection Using MSAS Correction

  • Yoon, Dong Hwan;Park, Byungwoon;Yun, Ho;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • Differential Global Positioning System-Correction Projection (DGPS-CP) algorithm, which has been suggested as a method of correcting pre-calculated position error by projecting range-domain correction to positional domain, is a method to improve the accuracy performance of a low price GPS receiver to 1 to 3 m, which is equivalent to that of DGPS, just by using a software program without changing the hardware. However, when DGPS-CP algorithm is actually realized, the error is not completely eliminated in a case where a reference station does not provide correction of some satellites among the visible satellites used in user positioning. In this study, the problem of decreased performance due to the difference in visible satellites between a user and a reference station was solved by applying the Multifunctional Transport Satellites (MTSAT) based Augmentation System (MASA) correction to DGPS-CP, instead of local DGPS correction, by using the Satellite Based Augmentation System (SBAS) operated in Japan. The experimental results showed that the accuracy was improved by 25 cm in the horizontal root mean square (RMS) and by 20 cm in the vertical RMS in comparison to that of the conventional DGPS-CP.

Performance Verification of Korean Wide Area Differential GNSS Ground Segement (한국형 광역보정시스템(WA-DGNSS) 지상국 성능 검증)

  • Yun, Ho;Han, Duk-Hwa;Kee, Chang-Don
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • This paper describes the progress and results of 'Wide Area Differetial GNSS (WA-DGNSS) Development' project which is supported by Korea Ministry of Land, Transport and Maritime Affairs. This project develops the main algorithm of the WA-DGNSS which can guarantee the improved accuracy, availability and integrity all over the Korean peninsula. After the establishment of WA-DGNSS ground system, a real time demonstration using pseudolite will be conducted. Product of this project will be directly utilized in Korean Satellite Based Augmentation System(SBAS) development project which is planned to be started from 2014.

Detection Performance Comparison of ADS-B and TCAS Using Simulation (시뮬레이션을 활용한 ADS-B와 TCAS의 탐지 성능 비교)

  • So, Jun-Soo;KU, SungKwan;Hong, Gyo-young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.465-472
    • /
    • 2015
  • In order to improve the performance of TCAS it should improve the performance of the sensor, which transmits a variety of information. In this paper, To improve the performance of the existing radar sensors such as being used in behalf of the next generation air traffic control system, ads-b the applied. In addition, ADS-B in a high precision by using information from the correction GPS system, SBAS assume would be able to apply an improved location accuracy for TCAS and analyzed TCAS and ADS-B. Played the simulation results, TCAS equipment receives the help of these ADS-B can calculate a CPA to determine the position of the aircraft in advance, and it was confirmed that it is possible to reduce the unnecessary RA operation, also, the pilot reduction and the workload, it has advantages such as fuel consumption and time associated with the reduced operation unnecessary RA was confirmed.

A Study on the Improvement of Domestic Navigation Safety System: Focused on the Implementation of Korea Augmentation Satellite System (국내 항행안전시스템의 개선에 관한 연구: 한국형 정밀위성항법 보강시스템의 구축을 중심으로)

  • Kim, Yeong-Pil;Hwang, Kyung Tae
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.221-230
    • /
    • 2021
  • The study attempts to suggest potential problem and solutions expected in the process of implementing KASS, which is currently under development to improve the domestic navigation safety system, and to summarize improvement effects of domestic navigation safety system anticipated by the implementation of KASS. Challenges expected in the process of implementing KASS exists in four aspects: emotional, technical, cost, safety aspects. When KASS is implemented and operates, various benefits can be realized. Benefits include cost savings by not using navigation safety systems during takeoff and landing; reduction of flight delays and cancellations by removing airway congestion; increase of aircraft accommodation capacity; reduction of carbon emissions; preparation for future aviation demands and improvement of air transportation safety; and reduction of flight accidents. In conclusion, it is expected to enter into an era of more intense competition due to increased aviation demands. In order to survive in this competitive environment, early introduction of KASS is indispensable. Analysis results of this study are expected to provide reference information for academic research in this area. A possible future research topic include a study predicting the changes in the navigation safety systems introduced by KASS and proposing practical and useful ways to respond the changes.

Review of GPS and Galileo Integrity Assurance Procedure (GPS와 Galileo의 무결성 보장 방법 조사)

  • Namkyu Woo;Gihun Nam;Heonho Choi;Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.

Development of MATLAB GUI Based Software for Analysis of KASS Availability Performance (KASS 가용성 성능 평가를 위한 MATLAB GUI 기반 소프트웨어 설계)

  • Choi, Bong-kwan;Han, Deok-hwa;Kim, Dong-uk;Kim, Jung-beom;Kee, Chang-don
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.384-390
    • /
    • 2018
  • This paper introduces a MATLAB graphical user interface (GUI) based software for analysis of korea augmentation satellite system (KASS) availability performance. This software uses minimum variance (MV) estimator and Kriging algorithm to generate integrity information such as user differential range error (UDRE) and grid ionospheric vertical error (GIVE). The information is offered to ground and aviation users in Korean region. The software also gives accuracy data, protection level data and availability map about each user position by using the integrity information. In particular the software calculates the protection level along a path of aircraft. We verified the result of protection level of aviation user by comparing them with the results of SBASimulator#2, which is a simulation tool of european geostationary navigation overlay service (EGNOS). As a result, the protection level error between the result of our software and the SBASimulator#2 was about 2% which means that the result of our software is accurate.