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1. INTRODUCTION

Differential global positioning system (DGPS) is a method 

of improving positioning accuracy to a level of 1 to 3 m by 

applying to a user’s receiver the correction generated from 

a reference station of which accurate position is measured, 

on the basis of the fact that common error of the signals 

received from the GPS has a great temporal and spatial 

correlation (Kaplan 2006).

Although a position-domain DGPS is very intuitive and 

easy to realize, it may have an error which is rather greater 

than that of a stand-alone system in a case where the visible 

satellites of a user are different from those of a reference 

station (Rizos 1999). Hence, range-domain correction, 

in which correction is selected according to the visible 

satellites of a user to remove the error, is generally used. The 
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Satellite Based Augmentation System (SBAS) and the Radio 

Technical Commission for Maritime (RTCM) Services of the 

National DGPS (NDGPS), which are representative DGPS 

methods, all adopt the range-domain correction.

Applying the DGPS range-domain correction requires a 

DGPS function embedded in a receiver or a GPS receiver 

module enabling output of raw data. However, since 

low-price GPS modules provide as output only the basic 

elements for applications such as present time and position, 

it is unavoidable for a low-price GPS instrument to employ 

the position-domain DGPS method in which position-

domain error is directly removed. To appropriately apply 

the position-domain DGPS to a low-price instrument, 

recently suggested is DGPS-carrier phase (DGPS-CP) which 

calculates a position-domain correction vector by projecting 

the range-domain correction to the position-domain and 

enables a user to directly improve the accuracy by using the 

position-domain correction vector (Park et al. 2011).

The early D GPS-CP method required a separate 

communication to provide ephemeris, having the drawback 

that a communication module for the transmission 

Received Jan 22, 2014 Revised Feb 06, 2014 Accepted Feb 14, 2014 
†Corresponding Author

E-mail: byungwoon@sejong.ac.kr
Tel: +82-2-3408-4385  Fax: +82-2-3408-3333



26    JPNT 3(1), 25-30 (2014)

http://dx.doi.org/10.11003/JPNT.2014.3.1.025

of ephemeris should be installed in addition to the 

conventional DGPS infrastructure. To improve the 

drawback, it  was shown that satellite constellation 

information included in GPS Satellite in View (GPGSV) 

information of the National Marine Electronics Association 

(NMEA) showed Table 1 (NMEA 2011) was used to 

constitute a line-of-sight vector on a local frame using the 

elevation angle and the azimuth angle information of a 

satellite and that an Earth Centered Earth Fixed (ECEF) 

coordinate-based line-of-sight matrix was constituted by a 

matrix rotation according to a user’s latitude and longitude 

so that a low-price module could realize a performance 

level similar to that of the conventional DGPS without an 

additional data communication module (Yoon et al. 2013).

However, there still remains a limitation that the error 

may not be completely removed in a case where the visible 

satellites provided a local DGPS correction are different 

from the visible satellites of the user (Park et al. 2013). On 

the other hand, when an SBAS message is used, a Pseudo 

Range Correction (PRC) of all visible satellites may be 

generated with reference to a user position. In this article, 

therefore, a DGPS-CP method using the SBAS correction 

information was suggested. In addition, the effect of the 

DGPS-CP method was analyzed by applying the Japanese 

MSAS correction information which may be received in the 

region of South Korea.

2. DGPS-CP IMPLEMENTATION USING 
MSAS CORRECTION

2.1 Multifunctional Transport Satellites (MTSAT) based 

Augmentation System  (MASA)

The SBAS, which is aimed at the improvement of 

aircraft navigation accuracy and integrity, includes the 

Wide Area Augmentation System (WAAS) of the U.S., 

the European Geostationary Navigation Overlay Service 

(EGNOS) of the Europe, the GPS Aided Geo-Augmented 

Navigation (GAGAN) of India, and the MTSAT Satellite-

based Augmentation System (MSAS) of Japan, all of which 

are currently in operation. The SBAS is extensively used in 

all instruments employing GPS because the SBAS allows 

for receiving of correction by using the conventional GPS 

antenna. The MSAS was developed to provide correction 

to the aircrafts in the region of Japan using GPS. The 

MSAS basically provides PRC, ephemeris correction, and 

ionosphere correction through satellites (Shimamura 1999). 

Fig. 1 is a schematic diagram of the entire MSAS.

Fig. 2 shows the message type flow chart of the MSAS 

(RTCA 2001), and Table 2 shows the message time (Sakai et 

al. 2010).

MTs 2 to 5 transmit the PRC, Issue of Data PRN Mask 

(IODP), and Issue of Data Fast Correction (IODF) information 

of each GNSS. MT6 transmits the integrity information and 

the IODF information in the case where MTs 2 to 5 fail to 

receive the information in a predetermined time interval. 

Table 4. Vertical error differences between DGPS-CP and MSAS-CP due to the loss of local 
DGPS correction for a specific satellite. 

GPSTime (sec) / (KST) DGPS-CP (m) MSAS-CP (m)
146869 (01:47:34)
146974 (01:49:19)
147190 (01:52:55)
147575 (01:59:20) 

3.6031 
2.1080 
2.3532 
3.2663 

2.1162 
0.4981 
0.8081 
1.3540 

Table 5. DGPS-CP and MSAS-CP position accuracy during the period of the loss of local DGPS 
correction for a specific satellite. 

Horizontal Vertical 
Stand-alone 
(SBAS-off) DGPS-CP MSAS-CP Stand-alone

(SBAS-off) DGPS-CP MSAS-CP

RMS (m) 1.0922 1.1917 1.0481 2.0312 0.9784 0.9395 

Fig. 1. MSAS system (Tsujii et al. 2008). 메모	[오전1]:	Tsujii et al.  수정Fig. 1. MSAS system (Tsujii  et al. 2008).

Fig. 2 SBAS message flow chart (RTCA 2001). 

Fig. 3. MSAS-CP implementation method using satellite data in NMEA without ephemeris. 

Fig. 2. SBAS message flow chart (RTCA 2001).

Table 1.  NMEA 0183 format (NMEA  2011).
Type Description Example

GPGGA GPS fix data
$GPGGA, 123519, 4807.038,N, 
01131.000,E, 1,08,0.9,
545.4,M,46.9,M,,*47

GPGLL
Geographic position,
Latitude / Longitude

$GPGLL,4916.45,N,12311.12,W,225444,A,
*1D

GPGSA
GPS DOP and active
satellite

$GPGSA
,A,3,03,04,,09,12,,,24,,,,,2.5,1.3,2.1*39

GPGSV GPS Satellites in view
$GPG
SV,3,1,11,03,03,111,00,04,15,270,00,06,01,010,
00,13,06,292,00*74
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MTs 24 and 25 transmit the correction information with 

respect to satellite position and satellite clock error together 

with the IODP and Issue of Data (IOD). MT26 provides 

ionosphere correction and MT 28 provides the information 

related the PRC according to the satellite observation region 

and the increment of the User Differential Range Error 

(UDRE), which is the ephemeris correction estimation error 

so that the user may directly calculate the UDRE increment 

(Jeong 2009).

2.2 DGPS-CP Implementation Using MSAS Correction

Fig. 3 illustrates the method of applying the MSAS 

correction described in Section 2.1 to the DGPS-CP 

algorithm.

The DGPS-CP algorithm may be realized simply by 

replacing the conventional DGPS correction with the MSAS 

correction.

The PRC of each satellite may be calculated by using the 

SBAS correction provided by the MSAS as shown in Eq. (1):
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Fig. 3. MSAS-CP implementation method using satellite data in NMEA without ephemeris. Fig. 3. MSAS-CP implementation method using satellite data in NMEA 
without ephemeris.

Table 2.  MSAS message type and schedule.

Message
type

Component
Timeout

interval for
NPA mode

Timeout
interval for PA

mode

Max
interval

2 to 5
Fast

Correction
18 to 180s 12 to 120s 6 to 60s

24 UDRE 18 12 6

6 UDRE 18 12 6

9 GEO Nav data 360 240 120

24 / 25
Long-term
Correction

360 240 120

26
Ionospheric
Correction

600 600 300

28
Clock-ephemeris

Covariance
360 240 120
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which was the logging period of the reference station. The 

MSAS correction was generated by applying the MSAS 

messages stored on the observation date to all the visible 

satellites from the user position. The period of the MSAS 

correction generation was set to be 30 seconds, which was 

the same with the local DGPS condition. To differentiate 

the two different methods, the conventional local DGPS is 

referred to as DGPS-CP, while the method of applying the 

MSAS correction to the DGPS-CP is referred to as MSAS-CP.

3.2 Performance comparison between MSAS-CP and 

DGPS-CP

The data stored on January 31, 2011 indicated that the 

time period when there was a great difference in the visible 

satellites between the user and the reference station due 

to the distance of 4 km between the two positions was 

from 21 o’clock to 4 o’clock in Korean Standard Time. Fig. 

5 compares the results of applying the two MSAS-CP and 

DGPS-CP algorithms to the SBAS-off mode data of that time 

period.

Since the time period which is concern of this study is 

from night to dawn when the ionospheric error is not great, 

the effect of improving accuracy by applying the correction 

is not great. However, Table 3 shows that the mean 

horizontal error and the mean vertical error were decreased 

from 0.46 m and -1.63 m to 0.14 m (MSAS-CP)/0.39 m 

Fig. 4. MSAS-CP test construction. 

Fig. 5. DGPS-CP and MSAS-CP position result for 7 hours (Korean Standard Time 21:13:01 ~ 
04:16:25) (Left: horizontal, Right: vertical). 
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Table 3.  DGPS-CP and MSAS-CP result statistics.

Horizontal Vertical

Stand-alone
(SBAS-off)

DGPS-
CP

MSAS-
CP

Stand-alone
(SBAS-off)

DGPS-
CP

MSAS-
CP

Mean (m) 0.4576 0.3933 0.1440 -1.6330 0.8624 0.7683

Standard
Deviation 

(m)
0.8931 0.9771 0.7875 1.0225 1.1317 0.9582

RMS (m) 1.0035 1.0533 0.8005 1.6921 1.1699 0.9797
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(DGPS-CP) and 0.77 m (MSAS-CP)/ 0.86 m (DGPS-CP), 

respectively, indicating that both the MSAS-CP and the 

local DGPS algorithms may appropriately correct the 

positional error. While the local DGPS algorithm removed 

about 0.52 m (31%) of the vertical error RMS, the MSAS-CP 

correction algorithm removed about 0.71 m (43%) of the 

vertical error RMS, indicating that the MSAS-CP algorithm 

effectively removed the positional error of the SBAS-off 

mode. This was because the local DGPS correction was not 

obtained with respect to some of the visible satellites used 

in the positioning in some time intervals. Fig. 5 shows the 

distribution of the vertical positional error by shading the 

time intervals.

In the first shaded interval, Satellites No. 12, 14, 18, 22, 25, 

31, and 32 were used in the positioning by the user receiver. 

However, the PRC generated at the GUMC reference station 

missed the Satellite No. 32 and the data from the Satellite 

No. 18 was also missed momentously In the third shaded 

interval, Satellites No. 3, 6, 13, 16, 19, 21, 23, 30, and 31were 

used but the correction of the Satellite No. 19 could not be 

applied. The analysis showed that the third shaded interval 

among the four shaded intervals was the most affected by 

the absence of the Satellite No. 19. Therefore, as shown in 

Fig. 6, the analysis of this study was focused on the time 

interval between GPS Time 146066 and 147599 (Korean 

Standard Time, 22:47:31~23:13:04) corresponding to the 

third shaded time interval.

According to Fig. 6, the mean vertical error included in 

the SBAS-off positioning was -1.71 m but the bias of the 

SBAS-off was appropriately removed by correcting the error 

by projecting the MSAS and the local DGPS correction to 

the position-domain. The mean MSAS-CP vertical error was 

0.85 m and the mean DGPS-CP error was 1.18 m, indicating 

that there was not a significant difference between the two 

methods. However, as shown in Table 4, the error difference 

between the two methods might temporarily be more than 

1.5 m.

In addition,  the MSAS-CP showed a continuous 

positional pattern as in the case of the stand-alone results. 

This result might be because the visible satellites used for 

positioning in the MSAS correction and in the stand-alone 

system were the same and thus the correction position-

domain projection was likewise varied continuously in 

the interval. On the other hand, the DGPS-CP results of by 

the local DGPS were discontinuous and included an error 

greater than that of the MSAS-CP. This was because the 

position correction was varied discontinuously due to the 

change of the visible satellites and the error included in the 

stand-alone position was not completely removed due to the 

discordance of the visible satellites between the reference 

station and the user. Table 5 shows the statistical data of 

the errors in the time interval where there is a discrepancy 

in the visible satellites between the local DGPS correction 

and the user. Table 5 shows the RMS values with respect to 

only the intervals where there is a discrepancy in the visible 

satellites between the local DGPS correction and the user. 

Table 5 also shows that the error removal performance of 

the MSAS-CP was 0.15 m in the horizontal direction and 0.04 

m in the vertical direction, indicating that the error removal 

performance of the MSAS-CP was better than that of the 

DGPS-CP.

4. CONCLUSIONS

In this study, the correction provided by the SBAS 

was applied to the DGPS-CP algorithm which is able to 

provide service of an accuracy level similar to that of the 

Fig. 6. DGPS-CP and MSAS-CP vertical error from 146066 to 147599 sec 
(Korean Standard Time, 22:47:31~23:13:04).

Table 4.  Vertical error differences between DGPS-CP and MSAS-CP due to the 
loss of local DGPS correction for a specific satellite.

GPSTime (sec) / (KST) DGPS-CP (m) MSAS-CP (m)

146869 (01:47:34)

146974 (01:49:19)

147190 (01:52:55)

147575 (01:59:20)

3.6031

2.1080

2.3532

3.2663

2.1162

0.4981

0.8081

1.3540

Table 5.  DGPS-CP and MSAS-CP position accuracy during the period of the loss 
of local DGPS correction for a specific satellite.

Horizontal Vertical

Stand-alone
(SBAS-off)

DGPS-
CP

MSAS-
CP

Stand-alone
(SBAS-off)

DGPS-
CP

MSAS-
CP

RMS (m) 1.0922 1.1917 1.0481 2.0312 0.9784 0.9395
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DGPS by using only the NMEA information and the result 

was compared with the result obtained by applying the 

conventional local DGPS correction. In this study, the MSAS 

correction was applied in replacement of the local DGPS 

correction to a U-blox receiver and the result showed that 

the horizontal error RMS was improved by about 24% from 

1.05 m to 0.8 m and the vertical error RMS was improved 

by about 16% from 1.17 m to 0.98 m. In particular, the error 

was decreased by about 1.5 m in some intervals. Therefore, 

the DGPS-CP algorithm to which the SBAS correction was 

applied may solve the problem of incomplete error removal 

which may take place in the case where the correction 

of some visible satellites of a user is not provided by a 

reference station.
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