DOI QR코드

DOI QR Code

Detection Performance Comparison of ADS-B and TCAS Using Simulation

시뮬레이션을 활용한 ADS-B와 TCAS의 탐지 성능 비교

  • So, Jun-Soo (Avionics Engineering, Hanseo University) ;
  • KU, SungKwan (Department of Aviation Leisure & Industry Management, School of Aeronautical Science, Hanseo University) ;
  • Hong, Gyo-young (Avionics Engineering, Hanseo University)
  • 소준수 (한서대학교 항공시스템공학과) ;
  • 구성관 (한서대학교 항공학부 항공레저산업학과) ;
  • 홍교영 (한서대학교 항공시스템공학과)
  • Received : 2015.10.06
  • Accepted : 2015.12.22
  • Published : 2015.12.30

Abstract

In order to improve the performance of TCAS it should improve the performance of the sensor, which transmits a variety of information. In this paper, To improve the performance of the existing radar sensors such as being used in behalf of the next generation air traffic control system, ads-b the applied. In addition, ADS-B in a high precision by using information from the correction GPS system, SBAS assume would be able to apply an improved location accuracy for TCAS and analyzed TCAS and ADS-B. Played the simulation results, TCAS equipment receives the help of these ADS-B can calculate a CPA to determine the position of the aircraft in advance, and it was confirmed that it is possible to reduce the unnecessary RA operation, also, the pilot reduction and the workload, it has advantages such as fuel consumption and time associated with the reduced operation unnecessary RA was confirmed.

TCAS (traffic alert and collision avoidance system)의 성능 향상을 위해서는 각종정보를 송신해주는 센서의 성능이 향상되어야 한다. 본 논문에서는 성능향상을 위해 기존에 사용 중인 레이더와 같은 센서를 대신하여 차세대 항공관제시스템인 ADS-B (automatic dependent surveillance-broadcast)를 적용하였다. 또한 ADS-B에서 초정밀 GPS (global positioning system) 보정시스템인 SBAS (satellite based augmentation system)의 정보를 사용하여 향상된 위치정확도를 TCAS에 적용할 수 있을 것이라 가정하고 TCAS와 ADS-B를 분석하였다. 시뮬레이션을 해본 결과, 이러한 ADS-B의 도움을 받는 TCAS 장비는 사전에 항공기의 위치를 파악하여 CPA (closest ponit of approach)를 계산할 수 있고 불필요한 RA (resolution advisory) 동작을 감소시킬 수 있다는 것이 확인되었고, 또한 조종사의 업무로드 감소와 불필요한 RA동작이 줄어듦에 따른 연료소비나 시간 등에 대한 장점이 있음이 확인되었다.

Keywords

References

  1. J. H. Go, A performance analysis on collision avoidance systems (TCAS and ADS-B), master's dissertation, Gyeongsang national university, Gyeongsangnam-do, Korea, Feb. 2009.
  2. Eurocontrol, "ACAS X - the future of airborne collision avoidance," NETALERT Newsletter issue 17, June. 2013.
  3. S. S. Lim, “A proposal for domestic implementation policy of next generation ACAS system,” The Journal of Advanced Navigation Technology, Vol. 18, No. 1, pp. 1-6, Feb. 2014. https://doi.org/10.12673/jkoni.2014.18.1.1
  4. K. Y. Hong, D. H. Kim, and K. R. Oh, “Study on the ADS-B operational effectiveness through flight test,” The Korea Institute of Military Science and Technology, Vol. 11, No. 2, pp. 137-145, June. 2007.
  5. D. W Burgess, S. I. Altman, and M. L. Wood, “TCAS: Maneuvering Aircraft in the Horizontal Plane,” The Lincon Laboratory Journal, Vol. 7, No. 2, pp. 295-312, 1994.
  6. Radio technical commission for aeronautics DO-242A, "minimum aviation system performance standards for automatic dependent surveillance-broadcast(ADS-B)," June. 2002.
  7. C. S. Sin, J. H. Kim, and J. Y. Ahn "Technical Development Trends of Satellite Based Augmentation System," Electronics and Telecommunications Trends, Vol. 29, No. 3, pp. 74-85, June. 2014
  8. Ministry of Land, Infrastructure and Transport, "A research of standard on improving the performance of an aircraft air collision avoidance system(TCAS-II)", Ministry of Land, Infrastructure and Transport, Sejong, Korea, Dec. 2012.
  9. RTCA SC-186, Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast. RTCA Paper No. 007-98/TMC-308. Jan. 1998.
  10. RTCA SC-147, "Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance System II (TCAS II) Airborne Equipment," RTCA/DO-185, Dec. 1997.
  11. Honeywell Aerospace, CAS 100 Traffic Surveillance System, Honeywell, 1944 E. Sky Harbor Circle Phoenix, AZ 85034, C61-0811-000-000, pp.1-4 Apr. 2008.