• Title/Summary/Keyword: Traffic alert and collision avoidance system

Search Result 11, Processing Time 0.022 seconds

The Design and Implementation of the Collision Avoidance Warning Function in the Air Traffic Control System (항공관제 시스템에서 항공기 공중충돌 경고기능의 설계 및 구현)

  • Song, Jin-Oh;Sim, Dong-Sub;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2009
  • An aircraft collision accident is a disaster that causes great losses of inventories and lives. Though a collision avoidance warning function is provided automatically to pilots in the aircrafts by the enhancement of the aircraft capability, achieving fast decision-making to escape a collision situation is a complex and dangerous work for pilots. If an in-flight collision situation is controlled by the air traffic control system which monitors all airplanes in the air, it would be more efficient to prevent in-flight collisions because it can handle the emergency before the pilot's action. In this paper, we develop the collision avoidance warning function in the air traffic control system. Specifically, we design and implement the five stages of the collision avoidance function, and propose a visualization method which could effectively provide the operators with the trajectories and altitudes of the aircrafts in a collision situation. By developing an in-flight collision warning function in the air traffic control system that visualizes flight patterns through the state transition data of in-flight aircrafts on the flight path lines, it can effectively prevent in-flight collisions with traffic alerts. The developed function allows operators to effectively select and control the aircraft in a collision situation by providing the operators with the expected collision time, the relative distance, and the relative altitude while assessing the level of alert, and visualizing the alert information which includes the Attention-Warning-Alert phase via embodying the TCAS standard. With the developed function the air traffic control system could sense an in-flight collision situation before the pilot's decision-making moment.

A Study for Avoidance Alarm Algorithm with ADS-B Message (ADS-B 메시지를 이용한 충돌 경보 알고리즘에 관한 연구)

  • Ju, Yo-Han;Ku, SungKwan;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.379-388
    • /
    • 2015
  • In the end of 1990's, future free flight technology had been developed and tested in America and government established the plan for free flight until 2017. Aircraft separation assurance must be secured essentially to avoid collision between aircrafts before Free Flight comes true. Now, Civil aircraft has rules about avoidance activity with traffic collision avoidance system (TCAS) but it can't apply to light aircraft. So there is a need about alternative method to apply light-aircraft because it has space and price problem to use TCAS. In this paper, TCAS algorithm has been modified and verified by simulating with LABVIEW program under ADS-B condition to get miniaturization and weight lighting cheaply. By simulating, collision alert algorithm is analyzed and verified with collision situation proposed by ICAO, and 100% checked for performing the alert announciation on all cases by TCAS standards.

Commercial off-the-shelf OS Performance of Aircraft Collision Avoidance Algorithm (항공기 충돌 회피 알고리즘에 따른 상용기성품 OS성능)

  • Yang, Jun-Mo;Park, Dae-Jin;Jeon, Yu-Ji;Lee, Sang-Cheol
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.196-196
    • /
    • 2016
  • 본 논문에서는 수직 회피에 사용되고 있는 Traffic Alert and Collision Avoidance System(TCAS)와 수평 회피 알고리즘을 객체지향 언어로 구현하였고, 구현된 소프트웨어의 검증을 위해 Intel-core i5-4세대 프로세서와 8GB의 메모리카드 그리고 Window7 OS 환경에서 확인하였다.

  • PDF

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

A Study on Conflict Detection and Resolution for Aircraft Separation Assurance in a Free Flight Environment (자유비행 환경에서의 항공기 분리보장을 위한 충돌 탐지 및 해결 방법에 대한 고찰)

  • Kim, Chang-Hwan;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2010
  • The goal for the CD&R system is to predict that a conflict is going to occur in the future, communicate the detected conflict to a human operator, and, in some cases, assist in the resolution of the conflict situation. To provide insight into different methods of conflict detection and resolution, a literature review of previous research models and current developmental and operational systems was performed. This paper focuses only on the specific attributes of each model, not on the depth to which a model has been analyzed, validated, or accepted. Thus, care should be taken to remember that a model that seems to be simple according to our categorization scheme may be significantly more viable than an apparently sophisticated model.

Detection Performance Comparison of ADS-B and TCAS Using Simulation (시뮬레이션을 활용한 ADS-B와 TCAS의 탐지 성능 비교)

  • So, Jun-Soo;KU, SungKwan;Hong, Gyo-young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.465-472
    • /
    • 2015
  • In order to improve the performance of TCAS it should improve the performance of the sensor, which transmits a variety of information. In this paper, To improve the performance of the existing radar sensors such as being used in behalf of the next generation air traffic control system, ads-b the applied. In addition, ADS-B in a high precision by using information from the correction GPS system, SBAS assume would be able to apply an improved location accuracy for TCAS and analyzed TCAS and ADS-B. Played the simulation results, TCAS equipment receives the help of these ADS-B can calculate a CPA to determine the position of the aircraft in advance, and it was confirmed that it is possible to reduce the unnecessary RA operation, also, the pilot reduction and the workload, it has advantages such as fuel consumption and time associated with the reduced operation unnecessary RA was confirmed.

An efficient Method of Antenna Placement considering EMI between equipments on UAV (무인기 탑재 장비 간 상호 EMI를 고려한 효율적인 안테나 배치 방안)

  • Kim, Choon-Won;Kim, Ji-Hoon;Kwon, Kyoung-Il;Chung, Deok-Cho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.987-994
    • /
    • 2011
  • This paper presents An efficient method of antenna placement considering EMI(Electromagnetic Interference) between equipments which are mounted on the UAV(Unmanned Air Vehicle). The analysis is accomplished for voice communication radio, control datalink, TCAS(Traffic Alert Collision & Avoidance System) and GPS(Global Positioning System) which are vulnerable to EMI because the frequencies are close to each other. There are two steps for analysis procedure : The first one is selecting antenna position on the UAV by monitoring return loss and pattern variation of each antenna. The second one is analyzing EMI via antennas between equipments. In the EMI analysis, spurious level of each transmitter, coupling level between antennas and system noise property are considered. This procedure can be used to predict EMI between equipments in development stage.

Collision Avoidance Maneuver of Unmanned Aerial Vehicles Applying TCAS-II (TCAS-II를 응용한 무인항공기의 충돌회피기동 연구)

  • Jo, Sin-Je;Kim, Jong-Seong;Jang, Dae-Su;Tak, Min-Je;Gu, Hwon-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.33-39
    • /
    • 2006
  • In this paper, the collision avoidance of Unmanned Aerial Vehicles(UAVs) by applying the Traffic alert and Collision Avoidance System II(TCAS-II) is introduced. The performances of two UAVs whose maximum vertical rates are different each other are compared and analysed by not only converting many TCAS-II commands into an autopilot input but also implementing a computer program based on the Minimum Operational Performance Standards for TCAS-II. As the alternative to a possible Near Mid-Air Collision for UAVs whose maximum vertical rates are low, we have proposed a modified algorithm considering the maximum vertical rate and altitude. The modified algorithm is available on the assumption that a wider surveillance range is provided by a ADS-B system.

Validation of Mid Air Collision Detection Model using Aviation Safety Data (항공안전 데이터를 이용한 항공기 공중충돌위험식별 모형 검증 및 고도화)

  • Paek, Hyunjin;Park, Bae-seon;Kim, Hyewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2021
  • In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.

Study on the Integrated UAV Simulation Environment for the Evaluation of the Midair Collision Alarm System (공중충돌경보시스템 평가를 위한 통합 무인기 시뮬레이션환경 연구)

  • Mun, Seong-yeop;Kim, Ju-young;Lee, Dong-woo;Baek, Gyeong Min;Kim, Jin Sil;Na, Jongwhoa
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.288-298
    • /
    • 2015
  • For the commercialization of unmanned aircraft, we must validate the safety of the air/ground collision alert systems (CAS). The validation procedure of CAS requires the flight test which is not only expensive but also dangerous. To alleviate this problem, we need the simulation based validation process for the CAS. We developed an integrated UAV simulation (IUS) environment which interconnect the flight simulator, the Matlab/Simulink, and a target avionics simulation model. We developed the collision warning module of the TCAS and tested using IUS and flight encounter models. Using IUS, we can evaluate the performance and reliability of a target avionic system at the preliminary design stage of a development life cycle.