• Title/Summary/Keyword: Satellite and sub-Satellite Data

Search Result 159, Processing Time 0.036 seconds

Usage of Internet-based Oceanographic GIS of the NW Pacific for Joint Analysis of Satellite and sub-Satellite Data

  • Golik A.V.;Fischenko V.K.;Dubina V.A.;Mitnik L.M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.371-374
    • /
    • 2004
  • The task of development and usage in a corporate computer network of the Far Eastern Branch of the Russian Academy of Sciences (FEB RAS) of integrated technology of joint use by the scientists of satellite and sub satellite data on a Northwestern Pacific is considered. This integrated technology is realized by embedding of satellite data in the corporate oceanographic GIS of FEB RAS as a new information layer, and also by support of GIS by program techniques for specialized processing of both kinds of the data. As a result of integration the specialists of FEB RAS have an opportunity to carry out coordinated samples of satellite and various oceanographic data as a function of area, time and other important conditions, visualize them together and carry out analytical processing with the usage of the GIS tools. Application of the realized approach to improve the techniques of detection and description of the oceanic phenomena on ERS-l and ERS-2 SAR images as well as to improve of perspective techniques of the usage the brightness temperatures measured by a microwave radiometers AMSR-E on a board of Aqua (USA) satellites are discussed.

  • PDF

Spatiotemporal Resolution Enhancement of PM10 Concentration Data Using Satellite Image and Sensor Data in Deep Learning (위성 영상과 관측 센서 데이터를 이용한 PM10농도 데이터의 시공간 해상도 향상 딥러닝 모델 설계)

  • Baek, Chang-Sun;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.517-523
    • /
    • 2019
  • PM10 concentration is a spatiotemporal phenomenta and capturing data for such continuous phenomena is a difficult task. This study designed a model that enhances spatiotemporal resolution of PM10 concentration levels using satellite imagery, atmospheric and meteorological sensor data, and multiple deep learning models. The designed deep learning model was trained using input data whose factors may affect concentration of PM10 such as meteorological conditions and land-use. Using this model, PM10 images having 15 minute temporal resolution and 30m×30m spatial resolution were produced with only atmospheric and meteorological data.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

Optimal Design of Superframe Pattern for DVB-RCS Return Link

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Seung-Joon;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.251-254
    • /
    • 2002
  • We developed a method for optimal superframe design in the multi-frequency time division multiple access (MF-TDMA) return-link of a satellite multimedia interactive network called a digital video broadcasting return channel over satellite (DVB-RCS) sub-network. To find the optimal superframe pattern with the maximum data throughput, we formulated the design problem as a non-linear combinatorial optimization problem. We also devised the proposed simple method so that it would have field applicability for improving radio resource utilization in the MF-TDMA return link.

  • PDF

CONCEPTUAL DESIGN OF ON BOARD DIGITAL BASE PART ON SATELLITE TO EFFECTIVELY INTERFACE THE DATA UPON SATELLITE REMOTE DEVICES (위성 원격 장비의 효율적 데이터 접속을 위한 위성 온-보드 디지털 베이스 밴드 개념 설계)

  • Koo, Cheol-Hea;Yang, Koon-Ho;Choi, Seong-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2006
  • In this paper, the conceptual design of satellite digital base put which is based upon data interface between satellite on-board computer and remote devices like satellite sub-components is presented. This conceptual design shows the unification of the interface between on-board computer and satellite remote devices and the hierarchical results of the interface level. A comparison of different system and merits and demerits of digital base part coming from this conceptual design is performed.

Management Information System of the Nanji Islands National Marine Reserve, China

  • Qingmei, XIAO;Huaguo, ZHANG;Changbao, ZHOU;Weigen, HUANG;Dongling, LI;Junhua, Ten
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.298-300
    • /
    • 2003
  • A management information system of the Nanji Islands National Marine Reserve is designed and constructed based on method of integration of remote sensing and geographic information system (GIS). The system consists of two sub-systems, dynamic monitoring information system and general database system. The former is used for storage and manage fundamental geographical data (topographical and bathymetric map), satellite remote sensing data (IKONOS, SPOT, IRS, NOAA and SeaWiFS etc.) and multimedia data. The latter is used for storage and manage resource data (shellfish and alga etc.), environmental data (meteorological and hydrologic) and in situ data. As part of electronic government, this system will be submitted to local government for monitoring, management and decision.

  • PDF

Preliminary Design of Electronic System for the Optical Payload

  • Kong Jong-Pil;Heo Haeng-Pal;Kim YoungSun;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.637-640
    • /
    • 2005
  • In the development of a electronic system for a optical payload comprising mainly EOS(Electro-Optical Sub-system) and PDTS(Payload Data Transmission Sub-system), many aspects should be investigated and discussed for the easy implementation, for th e higher reliability of operation and for the effective ness in cost, size and weight as well as for the secure interface with components of a satellite bus, etc. As important aspects the interfaces between a satellite bus and a payload, and some design features of the CEU(Camera Electronics Unit) inside the payload are described in this paper. Interfaces between a satellite bus and a payload depend considerably on whether t he payload carries the PMU(Payload Management Un it), which functions as main controller of the Payload, or not. With the PMU inside the payload, EOS and PDTS control is performed through the PMU keep ing the least interfaces of control signals and primary power lines, while the EOS and PDTS control is performed directly by the satellite bus components using relatively many control signals when no PMU exists inside the payload. For the CEU design the output channel configurations of panchromatic and multi-spectral bands including the video image data inter face between EOS and PDTS are described conceptually. The timing information control which is also important and necessary to interpret the received image data is described.

  • PDF

Sub-satellite Point Observation and Image Registration Accomplishment with GOES-9 IMC-Off Status

  • Lim Hyun-Su;Ahn Sang-il;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.212-215
    • /
    • 2004
  • GOES-9 has been operated with the status of the Image Motion Compensation(IMC) off since last October. As the IMC function turned off, the sub-satellite point(SSP) of GVAR data was changed with the effect of the satellite motions. This makes the image registration, to maintain pixels within an image and between successive images to their earth-referenced information, not to be possible any more. In the paper, we introduce the method to accomplish image registration and the result of the SSP observation with the status of IMC off.

  • PDF

THE ANALYSIS OF THE INFLUENCE OF THE COMPRESSION ON THE LOW EARTH ORBIT SATELLITE PAYLOAD SYSTEM

  • Shin, Sang-Youn;Choi, Myung-Jin;Heo, Haeng-Pal;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.232-235
    • /
    • 2008
  • The mission of the EO(electro-optical) based low earth orbit satellite is provision of the high-resolution images required for GIS(Geographical Information Systems) establishment and the applications for environmental, agriculture and ocean monitoring. AEISS(Advanced Earth Imaging Sensor System) which is the main payload on the satellite consists of EOS(electro-optical subsystem) and PDTS(Payload Data Transmission Sub-system). IDHU(Image Data Handling Unit) which is one of the major unit in PDTS is capable of compression, storage, encryption and encoding. In this paper, the payload system of the EO based satellite is briefly introduced and the influence of the compression on AEISS is analyzed.

  • PDF

Fast code synchronization method of the DS-SS/TDMA control channel for satellite communication (직접대역확산 방식의 시분할 다중접속 위성통신 제어채널 고속 부호동기 방법)

  • Ryu, Young-Jae
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • This paper describes synchronization concept and algorithm of the reverse DS-SS/TDMA control channel to handle satellite terminals which are distributed through the mission area. Military satellite control channel should have ECCM capabilities and handle more than several hundreds satcom terminals simultaneously. DS-SS/TDMA control channel can satisfy these demand but it spend much synchronization time. Proposed algorithm insert the preamble which is divided with several short sub bins prior to control data and use the parallel matched filtering searcher for each sub bin. As a result of the test, proposed algorithm can acquire most of control channel packet successfully within several milliseconds in severe jamming environment.

  • PDF