Acknowledgement
Supported by : 한국연구재단
이 연구는 한국연구재단 이공분야기초연구사업(NRF-2018R1D1A1B07043821)의 지원으로 수행되었습니다.
References
- Abderrahim, H., Chellali, M.R., and Hamou, A. (2016), Forecasting PM 10 in Algiers: Efficacy of multilayer perceptron networks, Environmental Science and Pollution Research, Vol. 23, No. 2, pp. 1634-1641. https://doi.org/10.1007/s11356-015-5406-6
- Hochreiter, S. and Jurgen S. (1997), Long short-term memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., and Brasseur, O. (2005), A neural network forecast for daily average PM10 concentrations in Belgium, Atmospheric Environment, Vol. 39, No. 18, pp. 3279-3289. https://doi.org/10.1016/j.atmosenv.2005.01.050
- Kingma, D.P. and Welling, M. (2013), Auto-encoding variational bayes, 2nd Proceedings of the International Conference on Learning Representations, ICLR, 2-4 May, Scottsdale, Arizona, USA
- Kingma, D.P., Mohamed, S., Rezende, D.J., and Welling, M. (2014), Semi-supervised learning with deep generative models, In Advances in Neural Information Processing Systems, pp. 3581-3589.
- Kloog, I., Koutrakis, P., Coull, B.A., Lee, H.J., and Schwartz, J. (2011), Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements, Atmospheric Environment, Vol. 45, No. 35, pp. 6267-6275. https://doi.org/10.1016/j.atmosenv.2011.08.066
- Krawczyk, B. (2016), Learning from imbalanced data: open challenges and future directions, Progress in Artificial Intelligence, Vol. 5, No. 4, pp. 221-232. https://doi.org/10.1007/s13748-016-0094-0
- Le, V.D. (2019), Spatiotemporal Deep Learning Model for Citywide Air Pollution Interpolation and Prediction, Master's thesis, Seoul National University, Seoul, Korea, 52p.
- Saleh, S.A.H. and Hasan, G. (2014), Estimation of PM10 concentration using ground measurements and Landsat 8 OLI satellite image, Journal of Geophysics and Remote Sensing, Vol. 3 No. 2, pp. 2169-0049.
- Saraswat, I., Mishra, R.K., and Kumar, A. (2017), Estimation of PM10 concentration from Landsat 8 OLI satellite imagery over Delhi, India, Remote Sensing Applications: Society and Environment, Vol. 8, pp. 251-257. https://doi.org/10.1016/j.rsase.2017.10.006
- Shahraiyni, H.T. and Sodoudi, S. (2016), Statistical modeling approaches for PM10 prediction in urban areas: A review of 21st-century studies, Atmosphere, Vol. 7, No. 2, 15p. https://doi.org/10.3390/atmos7020015
- Wen, C., Liu, S., Yao, X., Peng, L., Li, X., Hu, Y., and Chi, T. (2019), A novel spatiotemporal convolutional long short-term neural network for air pollution prediction, Science of The Total Environment, Vol. 654, pp. 1091-1099. https://doi.org/10.1016/j.scitotenv.2018.11.086
- Yao, L., Lu, N., and Jiang, S. (2012), Artificial neural network (ANN) for multi-source PM2.5 estimation using surface, MODIS, and Fig.rological data, International Conference on Biomedical Engineering and Biotechnology, IEEE, 28-30 May, Macau, China, pp. 1228-1231.
- Zhou, Y., Chang, F.J., Chang, L.C., Kao, I.F., and Wang, Y.S. (2019), Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts, Journal of Cleaner Production, Vol. 209, pp. 134-145. https://doi.org/10.1016/j.jclepro.2018.10.243