• Title/Summary/Keyword: Satellite Remotely Sensed Data

Search Result 117, Processing Time 0.029 seconds

Use of Remotely-Sensed Data in Cotton Growth Model

  • Ko, Jong-Han;Maas, Stephan J.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.393-402
    • /
    • 2007
  • Remote sensing data can be integrated into crop models, making simulation improved. A crop model that uses remote sensing data was evaluated for its capability, which was performed through comparing three different methods of canopy measurement for cotton(Gossypium hirsutum L.). The measurement methods used were leaf area index(LAI), hand-held remotely sensed perpendicular vegetation index(PVI), and satellite remotely sensed PVI. Simulated values of cotton growth and lint yield showed reasonable agreement with the corresponding measurements when canopy measurements of LAI and hand-held remotely sensed PVI were used for model calibration. Meanwhile, simulated lint yields involving the satellite remotely sensed PVI were in rough agreement with the measured lint yields. We believe this matter could be improved by using remote sensing data obtained from finer resolution sensors. The model not only has simple input requirements but also is easy to use. It promises to expand its applicability to other regions for crop production, and to be applicable to regional crop growth monitoring and yield mapping projects.

USING REMOTELY SENSED DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHAIYI PLAIN

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.422-425
    • /
    • 2007
  • Traditionally, surface energy fluxes are obtained by model simulations or empirical equations with auxiliary meteorological data. These methods may not effectively represent the surface heat fluxes in a regional scale due to scene variability. On the other hand, remote sensing has the advantage to acquire data of a large area in an instantaneous view. The remotely sensed data can be further used to retrieve surface radiation and heat fluxes over a large area. In this study, the airborne and satellite images in conjunction with meteorological data and ground observations were used to estimate the surface heat fluxes over Taiwan's Chaiyi Plain. The results indicate that surface heat fluxes can be properly determined from both airborne and satellite images. The correlation coefficient of surface heat fluxes with in situ corresponding observations is over 0.60. We also observe that the remotely sensed data can efficiently provide a long term monitoring of surface heat fluxes over Taiwan's Chaiyi Plain.

  • PDF

Change Detection of Buildings Using High Resolution Remotely Sensed Data

  • Zeng, Yu;Zhang, Jixian;Wang, Guangliang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • An approach for quickly updating GIS building data using high resolution remotely sensed data is proposed in this paper. High resolution remotely sensed data could be aerial photographs, satellite images and airborne laser scanning data. Data from different types of sensors are integrated in building extraction. Based on the extracted buildings and the outdated GIS database, the change-detection-template can be automatically created. Then, GIS building data can be fast updated by semiautomatically processing the change-detection-temp late. It is demonstrated that this approach is quick, effective and applicable.

  • PDF

A Study of Application of Remotely Sensed Data for the Management of National Parks - in case of Bukhansan National Park- (국립공원관리를 위한 위성영상 활용방안에 관한 연구 -북한산 국립공원을 사례로-)

  • Park, Kyeong;Chang, Eun-Mi;Scene, Sang-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 2001
  • National Parks in Korea occupy about four percents of South Korean land. This paper aims to prove the potentiality of the application of remotely sensed data for the effective management of National Parks. Different satellite images such as Landsat TM, IRS-1C, Alternative image, and IKONOS image are analyzed for the detection of changes, the extraction of degraded areas, and the comparison of Normalized Difference Vegetation Index (NDVI) in Bukhansan National Park. The artificial structures such as buildings and paved areas are overvalued in relatively higher resolution data. The result showed that the choice of images should be determined according to specific purposes and the combination of different resolution data may be the solution for the effective management of National Park.

  • PDF

An Approach to Measurement of Water Quality Factors and its Application Using NOAA satellite Data

  • Jang, Dong-Ho;Jo, Gi-Ho;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.363-370
    • /
    • 1999
  • Remotely sensed data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the spectral reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the OSMI multi-purpose satellite(KOMPSAT) scheduled to be launched on 1999 to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using remotely sensed low resolution data such as NOAA/AVHRR. In this study, Shiwha-District and Sang-Sam Lake was set up as the subject areas for the study. In this part of the study, we measured the spectral reflectance of the water surface to analyze the radiance of the water bodies in low resolution spectral band and tried to analyze the water quality factors in water bodies by using radiance feature from another remotely sensed data such as NOAA/AVHRR. As the method of this study, first, we measured the spectral reflectance of the water surface by using SFOV( Single Field of View) to measure the reflectance of water quality analysis from every channel in LRC spectral band(0.4~O.9${\mu}{\textrm}{m}$). Second, we investigated the usefulness of ground truth data and the LRC data by measuring every spectral reflectance of water quality factors. Third, we analyzed water quality factors by using the radiance feature from another remotely sensed data such as NOAA/AVHRR. We carried out ratio process of what we selected Chlorophyll-a and suspended sediments as the first factors of the water quality. The results of the analysis are below. First, the amount of pollutants of Shiwha-Lake has been increasing every you since 1987 by factors of eutrophication. Second, as a result of the reflectance, Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and turbidity represented high spectral reflectance at 0.57${\mu}{\textrm}{m}$. But suspended sediments absorbed high at 0.8${\mu}{\textrm}{m}$. Third, Chlorophyll-a and suspended sediments could have a distribution chart as a result of the water quality analysis by using NOAA/AVHRR data.

  • PDF

Coding of remotely sensed satellite image data using region classification and interband correlation (영역 분류 및 대역간 상관성을 이용한 원격 센싱된 인공위성 화상데이타의 부호화)

  • 김영춘;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1722-1732
    • /
    • 1997
  • In this paper, we propose a coding method of remotely sensed satellite image data using region classification and interband correlation. This method classifies each pixel vector consider spectral characteristics. Then we perform the classified intraband VQ to remove spatial (intraband redundancy for a reference band image. To remove interband redundancy effectively, we perform the classified interband prediction for the band images that the high correlation spectrally and perform the classified interband VQ for the remaining band images. Experiments on LANDSAT TM image show that the coding efficiency of the proposed method is better than that of the conventional Gupta's method. Especially, this method removes redundancies effectively for satellite iamge including various geographical objects and for and images that have low interband correlation.

  • PDF

Extension Test of Midday Apparent Evapotranspiration toward Daily Value Using a Complete Remotely-Sensed Input

  • Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.341-349
    • /
    • 2003
  • The so-called B-method, a simplified surface energy budget, permits calculation of daily actual evapotranspiration (ET) using remotely sensed data, such as NOAA-AVHRR. Even if the use of satellite data allows estimation of the albedo and surface temperature, this model requires meteorological data measured at ground-level to obtain the other inputs. In addition, a difficulty may be occurred by the difference of temporal scales between the net radiation in daily scale and instantaneous measurement at midday of the surface and air temperatures because the data covered whole day are necessary to obtain accumulated daily net radiation. In order to solve these problems, this study attempted a modification of B-method through an extension of hourly ET value calculated using a complete instantaneous inputs. The estimation of the daily apparent ET from newly proposed system showed a root mean square error of 0.26 mm/day as compared the output obtained from the classical model. It is evident that this may offer more rapid estimation and reduced data volume.

Development of Image Processing Software for Satellite Data

  • Chi, Kwang-Hoon;Suh, Jae-Young;Han, Jong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.361-369
    • /
    • 1998
  • Recently, the improvement of on-board satellite sensors covering hyperspectral image sensors, high spatial resolution sensors provide data on earth in diverse aspect. The application field relating remotely sensed data also varies depending on what type of job one wants. The various resolution of sensors from low to extremely high is also available on the market with a user defined specific location. The expense to purchase remote sensed data is going down compare to the cost it need past few years ago in terms of research or private use. Now, the satellite remote sensed data is used on the field of forecasting, forestry, agriculture, urban reconstruction, geology, or other research field in order to extract meaningful information by applying special techniques of image processing. There are many image processing packages available worldwide and one common aspect is that they are expensive. There need to be a advanced satellite data processing package for people who can not afford commercial packages to apply special remote sensing techniques on their data and produce valued-added product. The study was carried out with the purpose of developing a special satellite data processing package which covers almost every satellite produced data with normal image processing functions and also special functions needed on specific research field with friendly graphical user interface (GUI). And for the people with any background of remote sensing with windows platform.

  • PDF

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF