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Use of Remotely—Sensed Data in Cotton Growth Model

Jonghan Ko*' and Stephan J, Maas**

*Texas A&M University Texas Agricultural Experiment Station, 1619 Garner Field Road, Uvalde, TX 78801-6205
**Texas Tech University Plant and Soil Sciences, Mailing address: USDA-ARS, 3810 4th Street, Lubbock, TX 79415, USA

ABSTRACT Remote sensing data can be integrated into
crop models, making simulation improved. A crop model
that uses remote sensing data was evaluated for its
capability, which was performed through comparing three
different methods of canopy measurement for cotton
(Gossypium hirsutum L.). The measurement methods used
were leaf area index (LAI), hand-held remotely sensed
perpendicular vegetation index (PVI), and satellite remotely
sensed PVI. Simulated values of cotton growth and lint
yield showed reasonable agreement with the corresponding
measurements when canopy measurements of LAl and
hand-held remotely sensed PVI were used for model
calibration. Meanwhile, simulated lint yields involving the
satellite remotely sensed PVI were in rough agreement with
the measured lint yields. We believe this matter could be
improved by using remote sensing data obtained from finer
resolution sensors. The model not only has simple input
requirements but also is easy to use. It promises to expand
its applicability to other regions for crop production, and
to be applicable to regional crop growth monitoring and
yield mapping projects.
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Remote sensing and modeling are different techniques
useful to evaluate crop growth and yield (Maas, 1992).
Remotely sensed imagery can provide information for
almost any spot on the surface of the earth but can provide
information valid only at the time of image acquisition.
Models can provide a continuous description of crop con-
dition although they may not provide information as
accurately as that provided by remote sensing. However,
by combining the advantages of remote sensing and crop

simulation modeling, the strengths of one technology may
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make up for weaknesses in the other (Maas, 1992).

There have been previous efforts to combine these dif-
ferent techniques. As one of the earliest attempts, Arkin et
al. (1977) proposed the concept of a hybrid “spectral-
physiological” model able to use Landsat data. This con-
cept was described in the model SORGF (Maas and Arkin,
1978). Some of the efforts that followed were the models
of SOYGRO (Wilkerson et al., 1985) and SORKAM
(Rosenthal et al., 1989). Users of SOYGRO can adjust a
parameter affecting photosynthesis rate to improve agreement
between simulated and measured biomasses. In SORKAM,
a parameter affecting leaf expansion rate can be adjusted
to make agreement between simulated and measured leaf
area index (LAI). More recently, Bams ef al. (1997) modified
CERES-Wheat (Ritchie and Otter, 1985) to allow the model
to accept observed LAI and to adjust related parameters in
the model as a function of LAIL While these procedures
objectively calibrate model response to actual field condi-
tions for each application of the model, they still require
the acquisition of the same input requirements that CERES-
Wheat requires. Recently, Baez-Gonzalez et al. (2002)
reported a method using satellite and field data with crop
growth modeling to monitor and estimate corn yield. They
showed that a crop model integrated with satellite imagery
and field data can be possibly used to monitor crop growth
and to assess grain yield on a large scale.

Within-season calibration is one of the procedures used
to improve the accuracy of model estimates using relatively
simple input requirements (Maas, 1993b). GRAMI (Maas,
1992), a crop model that uses remote sensing data, in-
cludes a within-season calibration method allowing the
model simulation to fit measured values using an iterative
numerical procedure. Based on a comparison between mea-
sured and simulated values, model parameters and initial
conditions that affect crop growth can be changed. The
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model is then re-executed to produce a new set of simulated
values that minimizes the error between simulated leaf area
and values of leaf area obtained from remote sensing. An
advantage of this procedure is that it can use infrequent
observations to calibrate the model. These observations can
be obtained through non-destructive techniques such as
remote sensing (Maas, 1992). Remote sensing, either from
ground-based spectroradiometers, airborne sensors, or satel-
lites can efficiently acquire data on crop canopy growth for
numerous fields within an agricultural region. In some
situations, the use of remotely sensed crop canopy data to
calibrate a model can produce simulations of crop growth
that are more accurate than those obtained using ground-
based observations (Maas, 1993c).

Recently, Ko et al. (2005 and 2006) showed that the
within-season calibration method could be extended to si-
mulate the growth and lint yield of cotton by incorporating
factors to calculate the appearance and growth of bolls.
The procedure was demonstrated using cotton data from
irrigated fields in the Texas High Plains. The objective of
this study was to evaluate simulation performance of the
previously developed cotton crop model that uses remote
sensing data. The model was simulated using cotton data
sets with three different methods of canopy measurement.
The model verification was presented using field data from
irrigated commercial cotton fields in the Texas High Plains,
USA. The model was validated using field measured and
remotely sensed data from independent sites in this region
and its applicability will be discussed.

MATERIALS AND METHODS

Model Formulation

Crop Simulation

A cotton crop model that uses remote sensing data (Ko
et al., 2005) was used in this study. The four processes
(Fig. 1) were involved in simulating daily cotton crop
growth: (1) calculation of growing degree days (GDD); (2)
absorption of incident radiation energy by leaves; (3)
production of new dry mass by the leaf canopy and deter-
mination of boll production; and (4) determination of LAI
partitioning of new dry mass. The mathematical equations

to estimate these processes are described.
The accumulation of GDD is calculated as follows:

AG = Max[T —T, 0] []

where AG is the daily change of GDD, T is the average
daily air temperature (‘C) and Ty, is a base temperature
specific to a crop species. The value of Ty is 15.6°C (Wanjura
and Supak, 1985).

The daily increase in above-ground dry mass (AGDM) is

calculated as:
AM=¢-0Q 2]

where AM is the daily increase in AGDM, ¢ is the radi-
ation use efficiency (RUE) value specific for a given crop,
and Q is the daily total photosynthetically active radiation
(PAR, MJ m'z) absorbed by the crop canopy (Rosenthal et
al., 1989; Jones and Kiniry, 1986; Charles-Edwards et al.,
1986). The value of ¢ is 2.3 g My (Ko et al., 2005).
Absorption of PAR is calculated as:

Q=p-R-(1-e") (3]

where R is the incident daily total solar irradiance (MJ m™),
(3 the fraction of total solar irradiance that is PAR, and k
a light extinction coefficient specific for a given crop (Charles-
Edwards et al., 1986). The value for {3 is 0.45 (Monteith and
Unsworth, 1990). The value of k 1s 0.9 (Ko et al., 2005).

The daily LAI increase (AL) with new leaf growth is

calculated as follows:
AL=AM-P,-S [4]

where AM is the daily increase in AGDM from Equation
2, Py is the fraction of AM partitioned to new leaves and
S is the specific leaf area (SLA) of the leaf tissues (Maas,
1993a). SLA was determined from the relations between
leaf dry weight and LAl (Reddy ef al., 1989; Rhoads and
Bloodworth, 1964). The value of SLA is 0.01 m* g’ (Ko
et al., 2005). The dimensionless leaf-partitioning fraction
(P1) is calculated using the equation:
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P, = Max{l-a-e"” 0] [5]

where ¢ and b are parameters that control the magnitude
and shape of the function, and D is the cumulative GDD
(Maas, 1993a). This function reduces the partitioning of
new dry mass to leaves as the plant approaches the repro-
ductive phase.

The leaf senescence used in the model was formulated
to describe the loss of leaf area based on environmental
conditions. Leaf senescence (L, m’ m'2) in the model is

determined using the equation:
Li=c-(AMz — AM) (6]

where ¢ is the parameter that controls LAI curve after
maximum LAI, AMz is daily maintenance respiration require-

ment converted to biomass, calculated using the equation:
AMR=0.03-M [7]

where M is total AGDM. In the model, an amount of LAI
equal to Ls is deducted from the simulated canopy when-
ever the maintenance respiration exceeds the resources
required for growth of existing tissues.

The daily increase in boll number (AB) used in this
version of the model depends upon accumulated GDD and

LAI and is calculated with the following equation:

AB=y-D-Af (8]

where v is a fraction of boll production, D is accumulated
GDD and Af is daily boll production efficiency affected by
LAL The value of v is 0.57 GDD™' m™ (Ko et al., 2005).
Af is calculated by the equation:

AL
Af = # 9]

where A is a parameter that affects daily boll production,
and AL / AG is the rate of LAI increase per accumulated
GDD. The value of A is 0.0058 GDD™' (Ko et al., 2005).

A harvest index (HI) approach was used to estimate lint
yield from the simulated boll numbers in the model. The
HI was approximated from average boll numbers and lint
yields found in the research fields (Ko ef al., 2005). The

fraction of harvestable bolls was estimated as 0.67, and the
amount of lint per boll was estimated as 1.84 g boll™. This
result generally corresponds to the study by Jackson et al.
(1988, 1990) and Howell et al. (1984). In this study, a
value of 3.5 g boll” was estimated as an expected boll size
(seed-cotton) for the COTTAM model.

Within-season Calibration

The cotton model has within-season calibration proce-
dures that result in a minimal error between simulation and
measurements within the growing season. The within-season
calibration procedures recalibrate the initial values of LAI
and the parameters a, b, and c, referring to measured LAI
or remotely sensed vegetation index (VI) within growing
season. Since LAI or VI may be used as model input, the
relations between LAI and VI were investigated and func-
tions to convert one value to the other were included so
that both LAI and VI could be used as model input (Ko
et al., 2005 and 2006).

The proposed cotton model uses the same within-season
calibration procedures (Fig. 1) used in GRAMI, in which
the simulated crop growth is compared to measured values.
If the simulated values do not agree with the measured
ones, an iterative numerical process is used to manipulate

parameter values to improve agreement between the simula-

v

Crop simulation
(1) GDD accumulation
(2) PAR determination
(3) Increase in AGDM and boll
number
{4) LAI increase (partition)

Change parameter
Measured Slmulated values
growth MG) growth (8G) x

SG =~ MG
Y
Simulated
growth and yield

Fig. 1. Diagrammatic representation of the model that shows
daily cotton growth processes and the within-season
calibration. Measured and simulated growths refer to
measured and simulated LAI or VI. GDD, growing
degree days; PAR, photosynthetically active radiation;
AGDM, above ground dry mass; LAI, leaf area index.
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tion and the measurements. Determining the initial value of
LAI at crop emergence is the first step in model calibration
aimed at achieving a fit of simulated to measured LAIL As
it is shown using an example of how the initial value of
LAI at crop emergence affects simulation results (Fig. 2),
all other parameter values were held constant during this
initial calibration. Two statistics (E” and E") were used to
describe the difference between the simulation and the mea-
sured LAI values. The E* represents the sum of the posi-
tive errors between simulated and measured LAI, for example,
the sum of El and E3 (Fig. 2). Likewise, E™ represents the
absolute value of the sum of the negative errors, for
example, the sum of E2 and E4 (Fig. 2). A third statistic
is the total error E = E* + E. In this model, a fit of the
simulation to the measured LAI values is achieved when
the computed values of E™ and E are equal.

The secant method (Conte and De Boor, 1965, p. 32)
was used in an iterative manner to determine the initial
value of LAI (LO) that results in a best fit:

[10]

Ly), (L, -
L) = (L), +(E)); |:(_)¢)_}

(E/)j —(Ef)j—l

where (Lo)+1 is the value to be used in the next iteration,
(Ly); is the value used in the current iteration, (Lo).1 is the
value used in the iteration just prior to the current one, and

(Ep)y and (Ep1 are the values of E from iterative simula-
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Fig. 2. Simulated LAI’s calculated by the proposed cotton
model using six different values for the initial LAI at
emergence.

tions using (Lo); and (Lo)-1. The numerical procedure for Lo
continues until the total error falls below a preset conver-
gence criterion.

Though the previous procedure results in a best fit of the
measurement, it is not necessarily the minimal error fit.
Therefore, following the fit involving Lo, the value of the
parameters a, b, and ¢ are manipulated using iterative
numerical procedures to achieve a minimization of E (Press
et al., 1986, p. 283). The parabolic interpolation is used to
determine the value of the parameter at the minimum of
the parabola (P):

X (P, ~PR)[E ~Eis]
P+ LS e
k-1 /2 Y-(P—PIE - E.] H

P=
where, X =(P,_,—P_)[E._ -ELY=(B_ -P)E  ~E]
and P, P, and Py are the parameters associated with the
three-step simulations. Ej, Ex, and Ei, are the corres-
ponding total errors values resulting from these simula-
tions. Before this parabolic interpolation, the combination
of bracketing search is used in the model to establish the
search direction based on values of the given parameter
that increased or decreased from a starting value by a
specific step size. Once the bracketing search reaches the
minimal error, parabolic interpolation is used such that the
values of the parameters are changed to reduce the value
of E to less than an acceptable value in the iterative pro-
cedure.

The LAI initialization using the secant method, and para-
meterization using the parabolic interpolation procedure achieve
a one-dimensional minimization of E because these proce-
dures only change in one parameter at a time. Therefore,
a multidimensional minimization of E involving Lo, a, b, ¢
is employed such that convergence of the numerical
procedures is first achieved for Lo alone; then for the com-
bination of Lo and c; then Lo, ¢, and b; and then for Lo,

¢, b, and a.
Field Data
Verification

Cotton field data to develop and verify the model were

collected from farmers’ fields in the Texas High Plains during
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the summer of 2002. Three cotton fields were selected for
this study. These were circular with about 45 ha for each,
and the latitude and longitude of each field were: N34,
04459 and W102.03838; N34.06828 and W102.18609; and
N34.19188 and W102.02124. The soils were Brownfield fine
sands for the two fields and a Pullman clay loam, 0 to 1
percent slopes for the other (Soil survey for Lamb County,
TX, issued in 1962, and Hale County, TX, issued in 1974,
USDA Soil Conservation Service). Plant growth and develop-
ment data, including plant height, leaf area index (LAI),
and above ground dry mass (AGDM), were measured every
2 wk at four different locations in each field. The cotton
variety Paymaster 2326 BG/RR (Delta and Pine Land Co.,
Scott, MS) was planted on 16 May at 1.0 m row spacing
in all locations. During the cotton growing season (13
May-20 October), average photosynthetically active radiation
(PAR) was 9.83 MJ m™ d", and rainfall was 107.2 mm.
Irrigation was applied using Low Energy Precision Appli-
cation (LEPA).

In each plot, ten representative plants were selected, cut
and transported to the laboratory to measure several plant
growth parameters, including leaf area, number of main
stem nodes, squares, and bolls, and leaf, stem, square, and
boll dry mass. Leaf area was measured using a LI-3100
area meter (LI-COR Inc., Lincoln, NE). LAI was calcu-
lated as leaf area per plant divided by ground area per
plant. Plant samples were separated into leaves, stems,
squares, and bolls and dried at 70°C for 72-168 h depending

on sample sizes to obtain dry mass.

Validation

The model was validated using the data sets collected
with three different methods of plant canopy measurement
at different sites, respectively. The measurement methods
were LAI using destructive sampling, perpendicular vegeta-
tion index (PVI) (Richardson and Weigand, 1997) with a
hand-held multispectral radiometer (CROPSCAN Inc.,
Rochester, MN), and PVI from Landsat satellite imageries.

The data sets of LAl measurement were collected in
1999 and 2001 from a 45 ha field at the Texas A&M Uni-
versity Agricultural Research farm (32°16'N, 101°56'W)

near Lamesa, TX (Li et al., 2001; Bronson et al., 2003).
The soil was an Amarillo sandy loam. Cotton variety Pay-
master 2326 RR was planted on 10 May in 1999 and 28
May in 2001. Rainfall from May to mid-September was
130 mm in 1999 and 128 mm in 2001. Irrigation was
applied using a LEPA irrigation system.

The hand-held remote sensing data sets were collected
from 2002 to 2004 at the field of the USDA-ARS Plant
Stress and Water Conservation Laboratory (N33°35'38",
W101°54'04", altitude: 990 m) in Lubbock, TX (Wanjura
et al., 2004). The hand-held multispectral radiometer used
to measure reflectance of plant canopies accommodates up
to 16 bands to measure incident as well as reflected radia-
tions. The center wavebands (CWB) and bandwidths (BW)
for 2 filters used in this study were CWB 660 nm with
BW 10.0 nm and CWB 800 nm with BW 65.0 nm. The
soil was an Amarillo sandy loam. Cotton variety Paymaster
2326 BG/RR was planted on 13 May in 2002 and 2004.
Rainfall from May to mid-September was 186 mm in 2002
and 218 mm in 2004. Irrigation was applied using a sub-
surface drip irrigation system.

The satellite remotely sensed data sets were collected in
2000 and 2002 from eight commercially managed fields
near Olton, Lamb County, TX (Guo, 2005). Landsat-5 TM
and Landsat-7 TM images were obtained and geo-
referenced to UTM World Geodetic Survey 1984 (WGS84)
Zone 14. These images were radiometrically normalized so
that reference in different bands on different dates was
consistent (Rajapakse, 2005). For each image, an area of
interest containing all the eight fields was obtained using
the Environment for Visualizing Images (ENVI) software
package (Version 4.0, Research Systems Inc., Boulder, CO).
The areas of the fields planted to cotton were about 50 ha
for the six circles and 25 ha for the others. Cotton variety
Paymaster 2326 BG/RR was planted in these fields for the
two years. Planting and harvest dates varied, but were
typically in the middle of May and late October, respec-
tively. Rainfall from May to mid-September was 124 mm
in 2000 and 88 mm in 2002. Cotton was deficit-irrigated
using center pivot LEPA irrigation systems.

From each remote sensing data set, the PVI values were



398 SHEEX|(KOREAN J. CROP SCL.), 52(4), 2007

calculated using the equation:
(Ryop = a Rygp _b)/"1+a2 [12]

where Rsoo and Reso represent the reflectance values of
each waveband of 800 and 660. The values of a and b are
the slope and intercept from the linear equation of the bare
soil line (Richardson and Weigand, 1997). The values of
a and b for the hand-held multispectral radiometer data
were 1.24 and 0.02, while those for the satellite remote
sensing data were 0.53 and 0.04. The model design includes
provisions for including measured VI or LAI values as
input for within-season calibration. To accomplish this, con-

version functions (Table 1) were incorporated in the model.

RESULTS AND DISCUSSION

Verification

The crop model was used to simulate cotton growth and
yield for the field data set used in model development.
This was done to verify the performance of the model for
the development data set. Field measurements of leaf area
index (LAI) were used to calibrate the model rather than
measurements of remote sensing. LAI or canopy ground
cover of cotton can be estimated from remotely sensed scene
reflectance obtained from a hand-held remote sensor (Maas,
1998) and from satellite data (Maas, 2000) using a linear
mixture modeling approach. However, LAl estimation from
plant sampling represents crop growths of experimental
plots better than that from remotely sensed scene reflec-
tance. LAI data from plant sampling rather than remote
sensing one was used in the model.

The results demonstrated that the model was able to
reproduce the field observations of LAI, AGDM, and lint

Table 1. Relationships between the perpendicular vegetation
index (PVI) and leaf area index (LAI).

Relation between PVI and LAI r
H-PVI = 0.10 LAI*” (n = 41) 0.83 (P <0.0001)
SPVI = 020 LA™Y (0 = 24) 0.55 (P <0.0001)

H-PVI and S-PVI stand for hand-held and satellite remotely
sensed PVI respectively.

yield with reasonable accuracy (Fig. 3). While there were
some inaccuracies in AGDM, we believe that those are
within acceptable ranges of measurement errors. Develop-
ment of the model used in this study assumes that environ-
mental and genetic factors affecting crop growth are
expressed in the growth of the crop canopy. The GRAMI
model (Maas, 1992 and 1993a and b) demonstrated that
the assumption was generally appropriate. For crops with
indeterminate growth habits, this expression may be less
precise. However, in general there were significant relation-
ships between simulated and measured values for the three
fields. These results indicated that the model appeared
capable of reproducing irrigated cotton growth and yield

over the growing season.

Validation

Simulation performance of the model was demonstrated
using data sets obtained with three difference methods of
canopy measurement, which were LAI using destructive
sampling, perpendicular vegetation index (PVI) with hand-
held remote sensing, and PVI from Landsat satellite imageries.
Simulated LAI values agreed with the measured LAI values
with an r* value of 0.92 and a root mean squared error
(RMSE) of 0.21 while simulated lint yields agreed with the
measured lint yields with an  value of 0.75 and a RMSE
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Fig. 3. An example of simulated LAI passing through mea-
sured LAI values. The dotted lines (E1 to E4) repre-
sent the errors between simulated and measured values
of LAL
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of 89.36 kg ha™ (Fig. 4). We evaluated the performance of
the model iterative procedure using remote sensing data by
comparing simulated PVI and lint yield with measured values
(Fig. 5 and 6). For model simulation using hand-held remote

sensing data, simulated PVI values were in agreement with
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Fig. 4. Simulation vs. measurement of LAI (A), AGDM (B),
and lint yield (C) using data obtained at three com-
mercially managed fields near Olton, Lamb County,
TX in 2002. Dotted and dashed lines represent linear
regressions and 95% confidence intervals of the means.
LA, leaf area index and AGDM, above ground dry
mass.

the measured PVI values with an r* of 0.91 and a RMSE
of 0.03. Simulated lint yields determined using the hand-
held remotely sensed PVI showed general agreement with
the measured lint yields, with an * of 0.53 and a RMSE
of 123.13 kg ha™. For model simulation using satellite remote
sensing, simulated PVI values were in agreement with the
measured PVI values with an r* of 0.88 and a RMSE of
0.03. However, simulated lint yields roughly agreed with
the measured lint yields with an  of 0.07 and a RMSE
of 168.17 kg ha™.

The results show that simulated lint yields involving the
hand-held remotely sensed PVI were somewhat underesti-

mated in comparison with the measured lint yields until
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Fig. 5. Simulation vs. measurement of LAI (A) and lint yield
(B) using data obtained at the Texas A&M University
Agricultural Research farm near Lamesa, TX in 1999
and 2001. Dotted and dashed lines represent linear
regressions and 95% confidence intervals of the means.
LAI stands for leaf area index.
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Fig. 6. Simulation vs. measurement of hand-held remotely
sensed PVI (A) and lint yield (B) using data obtained
at the field of the USDA-ARS Plant Stress and Water
Conservation Laboratory in Lubbock, TX in 2002,
2003, and 2004. Dotted and dashed lines represent
linear regressions and 95% confidence intervals of the
means. PVI stands for perpendicular vegetation index.

1,000 kg ha and after 1,500 kg ha. Polycarpic perennials
generally reduce their partitioning to sexual reproduction
under low availability of resources such as water stress
(Chiarello and Gulmon, 1991). Our model was designed to
reduce reproductive organs of cotton under soil moisture
deficit condition. However, the model was not very sen-
sitive to the different irrigation treatments at the lower and
higher lint yields. It is assumed that canopy development
was not different enough among the lower and higher irri-
gation treatments to represent yield differences while the
model is sensitive to canopy development in estimating lint
yield. Sandras et al. (1997), by contrast, reported that repro-
ductive allocation of cotton was relatively stable in response
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Fig. 7. Simulation vs. measurement of satellite remotely
sensed PVI (A) and lint yield (B) using data obtained
at eight commercially managed fields near Olton,
Lamb County, TX in 2000 and 2002. Dotted and
dashed lines represent linear regressions and 95%
confidence intervals of the means. PVI stands for
perpendicular vegetation index.

to environmental factors. Other studies with cotton demon-
strated that there is reasonably stable relationship between
final harvest index and environmental factors including
water availability (Constable and Hearn, 1981; Orgaz et
al., 1992; Kimball and Mauney, 1993). We believe that
validation with more data sets is needed to deal with this
matter. In addition, the previous studies (Ko, 2005 and
2006; Maas and Doraiswamy, 1995; Moran et al., 1996)
showed that simulation could agree more closely with mea-
surement if data for within-season calibration occurs at
times critical to plant growth and development.
Simulated lint yields involving the satellite remotely

sensed PVI were in rough agreement with the measured
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lint yields. It is assumed that this is because the satellite
image resolution (30 m x 30 m per pixel) is too coarse to
deal with crop growth and yield seasonally and spatially at
field level. We believe this matter could be improved by
using remote sensing data obtained from finer resolution
sensors such as data from airborne or higher resolution
satellites. Maas (1993c) described that, in some situations,
the use of remotely sensed crop canopy data to calibrate a
model can produce simulations of crop growth that are
more accurate than those obtained using ground-based obser-
vations. Use of the within-season calibration procedure allows
the factors influencing crop growth to be incorporated into
the simulation. These factors can be genetic and environ-
mental, and examples of them include plant population, fertili-
zation, and water stress. These are not only difficult to
adequately incorporate into crop models but also increase
the input requirements of them. Maas (1993a and 1993b)
described that a crop model capable of within-season cali-
bration can adequately simulate crop growth and yield under
various conditions.

CONCLUSIONS

Simulated values of crop growth obtained with the new
model showed reasonable agreement with the corresponding
measurements when canopy measurements of LAI and hand-
held remote sensing were used for mode! calibration. The
proposed model has relatively simple environmental input
requirements compared to other process-oriented cotton
models. Since estimates of crop canopy growth used in
calibrating the model can be obtained through remote sensing
observations, it is applicable for regional cotton growth

monitoring and yield mapping efforts.
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