DOI QR코드

DOI QR Code

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data

다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지

  • 정종철 (남서울대학교 지리정보공학부) ;
  • 서영상 (국립수산과학원 동해수산연구소) ;
  • 김상욱 (한국토지공사 국토도시연구원)
  • Published : 2006.04.01

Abstract

The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Keywords

References

  1. 안산시, 2001, 시화호 간척지 생태계 조사 연구, 195pp
  2. 한국수자원공사, 2001, 사후환경영향조사 보고서, 2001 시화지구개발 외곽시설(방조제) 사업, 154pp
  3. 한국수자원공사, 2002, 시화호 간석지 생태환경 보전방안 수립, 최종보고서, pp.23-87
  4. 한국수자원공사, 2002, 시화호 간석지 생태환경 보전방안 수립, 최종보고서, pp.23-87
  5. 해양수산부, 2003, 갯벌생태계조사 및 지속가능한 이용방안연구, pp.762-773
  6. Kobler, A, 2000, Identifying brown bear habitate by a combined GIS and machine learning method, Ecological Modelling, 135, pp.291-300 https://doi.org/10.1016/S0304-3800(00)00384-7
  7. Kernohan, B. K., 1998, Use of an adaptive kernel home-range estimator in a GIS environment to calculate habitate use, J. of Environment Management, 53, pp.83-89 https://doi.org/10.1006/jema.1998.0198
  8. Ortigosa, G., 2000, VVF: integrating modelling and GIS in a software tool for habitate suitability assessment, Environment Modelling Software, 15, pp.1-12 https://doi.org/10.1016/S1364-8152(99)00029-8
  9. Henderson, F. M., T. F. Hart, B. P. Heaton and J. E. Portolese, 1999, Mapping coastal ecosystems over a steep development gradient using C-CAP protocols, International journal of remote sensing, 20(4), 727-744 https://doi.org/10.1080/014311699213163
  10. Urbanski, J. A., 2003, GIS based mapping of benthic habitats, Estuarine Coastal and Shelf Science, 56, pp.99-109 https://doi.org/10.1016/S0272-7714(02)00125-7
  11. Khan, M. A, Y. H. Fadlallah and K. G. Al-Hinai, 1992, Thematic Mapping of Subtidal Coastal in the Western Arabian Gulf using Landsat TM Data - Abu Ali Bay, Saudi Arabia, Int. J. Remote Sensing, 14(4), 605-614