Use of Remotely-Sensed Data in Cotton Growth Model

  • Ko, Jong-Han (Texas A&M University Texas Agricultural Experiment Station) ;
  • Maas, Stephan J. (Texas Tech University Plant and Soil Sciences)
  • Published : 2007.12.31

Abstract

Remote sensing data can be integrated into crop models, making simulation improved. A crop model that uses remote sensing data was evaluated for its capability, which was performed through comparing three different methods of canopy measurement for cotton(Gossypium hirsutum L.). The measurement methods used were leaf area index(LAI), hand-held remotely sensed perpendicular vegetation index(PVI), and satellite remotely sensed PVI. Simulated values of cotton growth and lint yield showed reasonable agreement with the corresponding measurements when canopy measurements of LAI and hand-held remotely sensed PVI were used for model calibration. Meanwhile, simulated lint yields involving the satellite remotely sensed PVI were in rough agreement with the measured lint yields. We believe this matter could be improved by using remote sensing data obtained from finer resolution sensors. The model not only has simple input requirements but also is easy to use. It promises to expand its applicability to other regions for crop production, and to be applicable to regional crop growth monitoring and yield mapping projects.

Keywords

References

  1. Arkin, G. F., C. L. Wiegand, and H. Huddleston. 1977. The future role of a crop model in large area yield estimation. In Proceedings of the Crop Modeling Workshop, PP. 87-116. USDA-NOAA-EDIS-CEAS, Columbia, MO
  2. Baez-Gonzalez, A. D., P. Chen, M. Tiscareno-Lopez, and R. Srinivasan. 2002. Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico. Crop Sci. 42 : 1943-1949 https://doi.org/10.2135/cropsci2002.1943
  3. Barns, M. B. P. J. Pinter Jr., B. A. Kimball, G. W. Wall, R. L. LaMorte, D. J. Husaker, F. Adamsen, S. Leavitt, T. Thompson, and J. Mathius. 1997. Modification of CERES-Wheat to accept leaf area index as an input variable. The 1997 ASAE Annual International Meeting Sponsored by ASAE, Minneapolis, Minnesota, August 10-14. ASABE, St. Joseph, MI
  4. Bronson, K. F., J. W. Keeling, J. D. Booker, T. T. Chua, T. A. Wheeler, R. K. Boman, and R. J. Lascano. 2003. Influence of landscape position, soil series, and phosphorus fertilizer on cotton lint yield. Agron. J. 95 : 947-957
  5. Charles-Edwards, D. A., D. Doley, and G. M. Rimmington. 1986. Modeling plant and development. Academic Press, Orlando, FL
  6. Chiarello, N. R. and S. L. Gulmon. 1991. Stress effects on plant reproduction. In: Mooney H. A., Winner W. E., Pell E. J., Chu E, Eds. Response of plants to multiple stresses. New York: Academic Press, 161-168
  7. Constable, G. C. and A. B. Hearn. 1981. Irrigation of crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield, and quality of cotton. Irrigation Science 3 : 17-28
  8. Conte, S. D. and D. de Boor. 1965. Elementary numerical analysis: An algorithmic approach. McGraw-Hill, New York
  9. Guo, W. 2005. Spatial and temporal variability in cotton yield in relation to soil apparent electrical conductivity, topography, and remote sensing imagery. Ph. D. diss. Texas Tech Univ., Lubbock
  10. Howell, T. A., K. R. Davis, R. L. McCormick, H. Yamada, V. T. Walhood, and D. W. Meek. 1984. Water use efficiency in narrow row cotton. Irr. Sci. 5 : 195-214
  11. Jackson, B. S., G. F. Arkin, and A. B. Hearn. 1988. The cotton simulation model 'COTTAM': fruiting model calibration and testing. Trans. of the ASAE. 31(3) : 846-854 https://doi.org/10.13031/2013.30790
  12. Jackson, B. S., G. F. Arkin, and A. B. Hearn. 1990. COTTAM: a cotton plant simulation model for an IBM PC microcomputer. College Station, Texas, The Texas Agricultural Experiment Station, The Texas A&M University System: 241p
  13. Jones, C. A. and J. R. Kiniry. 1986. CERES-MAIZE: A simulation model of maize growth and development. Texas A&M University Press. College Station, TX
  14. Kimball, B. A. and J. R. Mauney. 1993. Response of cotton to varying $CO_{2}$, irrigation, and nitrogen: yield and growth. Agron. J. 85 : 700-706
  15. Ko, J., S. J. Maas, R. J. Lascano, and D. Wanjura. 2005. Modification of the GRAMI model for cotton. Agron. J. 97: 1374-1379 https://doi.org/10.2134/agronj2004.0267
  16. Ko, J., S. J. Maas, S. Mauget, G. Piccinni, and D. Wanjura. 2006. Modeling water-stressed cotton growth using within-season remote sensing data. Agron. J. 98 : 1600-1609 https://doi.org/10.2134/agronj2005.0284
  17. Li, H., R. J. Lascano, E. M. Barnes, J. Booker, L. T. Wilson, K. F. Bronson, and E. Segarra. 2001. Multispectral reflectance of cotton related to plant growth, soil water and texture, and site elevation. Agron. J. 93 : 1327-1337 https://doi.org/10.2134/agronj2001.1327
  18. Maas, S. J. 1998. Estimating cotton ground cover from remotely sensed scene reflectance. Agron. J. 90 : 384-388 https://doi.org/10.2134/agronj1998.00021962009000030011x
  19. Maas, S. J. 1992. GRAMI: a crop growth model that can use remotely sensed information. USDA, ARS-91, 77p
  20. Maas, S. J. 1993a. Parameterized model of gramineous crop growth: I. Leaf area and dry mass simulation. Agron. J. 85 : 348-353 https://doi.org/10.2134/agronj1993.00021962008500020034x
  21. Maas, S. J. 1993b. Parameterized model of gramineous crop growth: II. Within-season simulation calibration. Agron. J. 85 : 354-358 https://doi.org/10.2134/agronj1993.00021962008500020035x
  22. Maas, S. J. 1993c. Within-season calibration of modeled wheat growth using remote sensing and field sampling. Agron. J. 85 : 669-672 https://doi.org/10.2134/agronj1993.00021962008500030028x
  23. Maas, S. J. 2000. Linear mixture modeling approach for estimating cotton canopy ground cover using satellite multi-spectral imagery. Remote sensing. Environ. 73 : 304-308
  24. Maas, S. J. and P. C. Doraiswamy. 1996. Integration of satellite data and model simulation in a GIS for monitoring regional evaporation and biomass production. Proceedings of 3rd International Conference on Integrating GIS and Environmental Modeling, Santa Fe, NM, Jan. 21-26, 2006, CD-ROM. The National Center for Geographic Information and Analysis, Santa Barbara, CA
  25. Maas, S. J. and G. F. Arkin. 1978. User's guide to SORGF: A dynamic grain sorghum growth model with feedback capacity. Research Center Program and Model Documentation No. 78-1, Texas Agricultural Experiment Station. College Station, TX
  26. Monteith, J. L. and M. H. Unsworth. 1990. Principles of environmental physics, second edition. Edward Arnold. New York. 291p
  27. Moran, M. S, S. J. Maas, and P. J. Pinter, Jr. 1995. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sensing Reviews 12 : 335-353 https://doi.org/10.1080/02757259509532290
  28. Orgaz, F., L. Mateos, and E. Fereres. 1992. Season length and cultivar determine the optimum evapotranspiration deficit in cotton. Agron. J. 84 : 700-706 https://doi.org/10.2134/agronj1992.00021962008400040031x
  29. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical recipes in Fortran: The art of scientific computing, second edition. Cambridge Univ. Press, New York
  30. Rajapakse, S. S. 2005. Automated radiometric normalization techniques for multi-temporal Landsat-TM and ETM+ imagery. Dissertation, Texas Tech University
  31. Reddy, V. R., B. Acock, D. N. Baker, and M. Acock. 1989. Seasonal leaf area - leaf weight relationships in the cotton canopy. Agron. J. 81 : 1-4 https://doi.org/10.2134/agronj1989.00021962008100010001x
  32. Rhoads, F. M. and M. E. Bloodworth. 1964. Area measurement of cotton leaves by dry-weight method. Agon. J. 56 : 520-522
  33. Richardson, A. J. and C. L. Wiegand. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing 43 : 1541-1552
  34. Ritchie, J. T. and S. Otter. 1985. Description and performance of CERES-Wheat: A User-oriented wheat yield model. P. 159-175. In ARS Wheat Yield Project. ARS-38. National Technology Information Service, Springfield, VA
  35. Rosenthal, W. D., R. L. Vanderlip, B. S. Jackson, and G. F. Arkin. 1989. SORKAM: A grain sorghum crop model. Texas Agric. Exp. Stn. Miscellaneous Publication MP-1669
  36. Sanders, V. O., M. P. Bange, and S. P. Milroy. 1997. Reproductive allocation of cotton in response to plant environmental factors. Annuals of Botany. 80 : 75-81 https://doi.org/10.1006/anbo.1997.0402
  37. Wanjura, D. F. and J. R. Supak. 1985. Temperature methods for monitoring cotton development. Beltwide Cotton Conferences. pp. 369-372
  38. Wanjura, D. F., D. R. Upchurch, and S. J. Maas. 2004. Spectral reflectance estimates of cotton biomass and yield. Beltwide Cotton Conference, pp. 838-851
  39. Wilkerson, G. G., J. W. Jones, K. J. Boot, and J. W. Mishoe. 1985. SOYGRO V5.0: Soybean crop growth and yield model. Technical Documentation, Univ. Florida, Gainesville, FL