• Title/Summary/Keyword: Satellite Mission Attitude

Search Result 72, Processing Time 0.029 seconds

The OBC Reconfiguration Test on LEO Satellite (저궤도 위성에서 위성탑재컴퓨터의 재구성 시험)

  • Jeong, Jae-Yeop;Lee, Cheol-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.103-107
    • /
    • 2017
  • The Satellite OBC(On Board Computer) manages critical functionality such as satellite attitude control, fault management, payload management, command/telemetry processing etc. The OBC consist of various modules. Each module perform mission critical operation. So all modules designed as hot or cold redundancy architecture. The redundancy design gives a guarantee high reliability and it allows normal operation of satellite using reconfiguration capability. In this paper, introduces reconfiguration unit operation and describe the results of testing in the ETB.

Mission and Conceptual System Design of Solar Sail Testing Cube Satellite CNUSAIL-1 (태양돛 시험용 큐브위성 CNUSAIL-1의 임무 및 시스템 개념설계)

  • Koo, Soyeon;Kim, Gyeonghun;Yoo, Yeona;Song, Sua;Kim, Sungkeun;Oh, Bockyoung;Woo, Beomki;Han, Chang-Gu;Kim, Seungkeun;Suk, Jinyoung;Han, Sanghyuck;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.586-593
    • /
    • 2014
  • The CNUSAIL-1 project aims to develop and operate a 3U-sized cube satellite with solar sail mechanism. The primary mission is to successfully deploy the solar sail in a low earth orbit, and the secondary mission is to collect the scientific data for the effect of the solar sail deployment and operation on orbit maneuver and attitude change of the cube satellite. For this, the bus system will collect and transmit the dynamic data of the satellite and the visual images of the solar sail operation. This paper describes solar sail mission and conceptual design of CNUSAIL-1. The actuation/operation of the solar sail and the bus system are preliminarily designed in terms of attitude control system, communication system, electrical power system, command and data handling system, structure and thermal control system is designed.

Types and Characteristics of Chemical Propulsion Systems for Repersentative Korean Satellites (국내의 대표적 인공위성 화학추진시스템의 형식 및 특성)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.747-752
    • /
    • 2007
  • Domestic satellite development programme is generally classified into two categories: COMS as GEO satellite and KOMPSAT as LEO one. Each satellite has the on-board propulsion system fulfilling its own mission requirements. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. It is the well-known Chemical Propulsion System(CPS) using bipropellants. On the other hand, the monopropellant propulsion system is employed in KOMPSAT, and its main role is on-station attitude control excluding the orbit transfer function. In this study, these two representative propulsion systems are compared and analysed as well, in terms of essential differences and important characteristics.

Attitude determination of cubesat during eclipse considering the satellite dynamics and torque disturbance (인공위성의 동역학과 토크 외란을 고려한 큐브위성의 식 기간 자세추정)

  • Choi, Sung Hyuk;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.298-307
    • /
    • 2016
  • Attitude determination of satellite is categorized by deterministic and recursive method. The recursive algorithm using Kalman filter is widely used. Cubesat has limitation for payload to minimize then only two attitude sensors are installed which are sun sensor and magnetometer. Sun sensor measurements are useless during eclipse, however cubesat keeps estimating attitude to complete the successful mission. In this paper, Attitude determination algorithm based on Kalman filter is developed by additional term which considering the dynamics for SNUSAT-1 with disturbance torque. Verification of attitude accuracy of the algorithm is conducted during eclipse. Attitude determination algorithm is simulated to compare the performance between typical method and proposed algorithm. In addition, Attitude errors are analysed with various magnitude of disturbance torque caused by space environment.

정지궤도 통신해양기상위성 기술특성 분석

  • Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this study, the technical characteristics of geosynchronous multi-mission satellites are investigated, compared to communication satellites. Geosynchronous meteorological satellites, whose imaging data is normally shared with the international society, have large coverage for monitoring and data service. Also the higher pointing accuracy is requested to keep the spatial resolution of 1-4km, compared to those of communication satellites. Cryogenic thermal control is needed for the better performance of IR sensors and the contamination protection of optical parts should be considered. On the other hands, for the successful development of the multi-mission satellite COMS, which will be launched in 2008, the special features of attitude control, electrical power, thermal control and mechanism are investigated.

  • PDF

A Concept for improving the Level of Autonomy of an LEO Satellite (저궤도 위성의 자율성 수준 향상을 위한 개념 제안)

  • Jeon, Moon-Jin;Kim, Eunghyun;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The ground station which operates the LEO satellite performs monitoring state of health of the satellite, sending the commands for the imaging mission of receiving the images during about 10 minutes of contact time. To finish the planned procedure in limited contact time, specific level of autonomy is applied in the satellite and the ground system. For example, the attitude and orbit control logic has high level of autonomy because it must be operated alone for long period without operator intervention. On the other hand, the fault management logic has relatively low level of autonomy because of that failure detection and safing operation are performed on-board, whereas failure identification and recovery are on-ground operation. The level of autonomy of the satellite affects also the ground operation. The command set for mission operation is generated by ground system. If the satellite has higher level of autonomy, some of operation currently done on-ground can be performed on-board, so the ground operation can be simplified. In this paper, we discuss the level of autonomy and propose a concept for improving the level of autonomy of an LEO satellite.

Development of a Fine Digital Sun Sensor for STSAT-2

  • Rhee, Sung-Ho;Lyou, Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2). Based on the mission requirements of STSAT-2, the conventional analog-type sun sensors were found to be inadequate, motivating the development of a compact, fast and fine digital sun sensor (FDSS). The FDSS uses a CMOS image sensor and has an accuracy of less than 0.03degrees, an update rate of 5Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize its weight. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA), which acquires images from the CMOS sensor, and stores and processes the image data. The sensor accuracy is maintained by a rigorous centroid algorithm. This paper describes the FDSS designs, realizations, tests and calibration results.

Preliminary Design of LEO Satellite Propulsion System (저궤도위성 추진시스템 예비 설계)

  • Yu, Myeong-Jong;Lee, Gyun-Ho;Kim, Su-Gyeom;Choe, Jun-Min
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.85-89
    • /
    • 2006
  • Propulsion System provides the required velocity change impulse for orbit transfer from parking orbit to mission orbit and three-axis vehicle attitude control impulse. New LEO Satellite propulsion system (PS) will be an all-welded, monopropellant hydrazine system. The PS consists of the subassemblies and components such as Thrusters, Propellant Tank, Pressure Transducer, Propellant Filter, Latching Isolation Valves, Fill/Drain Valves, interconnecting propellant line assembly, and thermal hardwares for operation-environment control of the PS. In this study, preliminary design process of LEO Satellite propulsion system will be summarized.

  • PDF

Analysis of the Effectiveness of Space Object Collision Avoidance through Nano-Satellite Attitude Maneuver (초소형위성 자세제어를 통한 우주물체 충돌회피 효용성 분석)

  • Jaedong Seong;Okchul Jung;Youeyun Jung;Saehan Song
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.62-73
    • /
    • 2024
  • This study analyzed the effectiveness of orbital change through attitude change in nano-satellites operating in low Earth orbit (LEO) without thrusters, focusing on collision avoidance maneuvers. The results revealed that changes in the satellite's cross-sectional area significantly impact its in-track direction, influenced by the aspect ratio of cross-sectional area change and mission altitude. Notably, satellites at lower altitudes demonstrated significant reduction in collision risks with a small amount of attitude change. Through this study, it is judged that the changing the cross-sectional area through attitude maneuver is a sufficiently suitable method in the operation of nano-satellites without thrusters, and is expected to contribute to improving the safety of satellite operations in the New Space era.

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF