DOI QR코드

DOI QR Code

Analysis of the Effectiveness of Space Object Collision Avoidance through Nano-Satellite Attitude Maneuver

초소형위성 자세제어를 통한 우주물체 충돌회피 효용성 분석

  • Jaedong Seong (Korea Aerospace Research Institute (KARI)) ;
  • Okchul Jung (Korea Aerospace Research Institute (KARI)) ;
  • Youeyun Jung (Korea Aerospace Research Institute (KARI)) ;
  • Saehan Song (Korea Aerospace Research Institute (KARI))
  • 성재동 (한국항공우주연구원) ;
  • 정옥철 (한국항공우주연구원) ;
  • 정유연 (한국항공우주연구원) ;
  • 송새한 (한국항공우주연구원)
  • Received : 2024.01.12
  • Accepted : 2024.02.13
  • Published : 2024.02.28

Abstract

This study analyzed the effectiveness of orbital change through attitude change in nano-satellites operating in low Earth orbit (LEO) without thrusters, focusing on collision avoidance maneuvers. The results revealed that changes in the satellite's cross-sectional area significantly impact its in-track direction, influenced by the aspect ratio of cross-sectional area change and mission altitude. Notably, satellites at lower altitudes demonstrated significant reduction in collision risks with a small amount of attitude change. Through this study, it is judged that the changing the cross-sectional area through attitude maneuver is a sufficiently suitable method in the operation of nano-satellites without thrusters, and is expected to contribute to improving the safety of satellite operations in the New Space era.

본 연구에서는 추력기가 없는 저궤도 초소형위성의 자세변경을 통한 궤도변경 방식이 충돌회피기동에 얼마나 효과적인지 분석하였다. 연구 결과, 단면적의 변화는 위성의 진행방향에 영향을 주며, 단면적 변화비율과 임무고도에 따라 기동전 궤도의 변화량이 달라졌다. 특히, 임무고도가 낮은 위성에서 짧은 시간 동안의 자세변경으로 충돌위험을 현저히 감소시킬 수 있음을 확인하였다. 본 연구를 통해 추력기가 없는 초소형위성 운영에 있어 자세기동을 통한 단면적의 변화방식이 충분히 활용가능한 방안으로 판단되며, 뉴스페이스 시대의 위성 운영 안전성 향상에 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 한국항공우주연구원의 위성임무관제사업(FR24G00)의 지원을 받아 수행되었습니다.

References

  1. KULU, Erik, Nanosatellite launch forecasts: track record and latest prediction, in 36th Annual Small Satellite Conference, Logan, UT, 9 Aug 2022.
  2. SATCAT Boxscore, CelesTrak (2024) [Internet], viewed 2024 Jan 3, available from: https://celestrak.org/satcat/boxscore.php
  3. Seong J, Jung O, Jung Y, Song S, Development and operation status of space object collision risk management system for Korea Aerospace Research Institute (KARI), J. Space Technol. Appl. 3, 280-300 (2023). https://doi.org/10.52912/jsta.2023.3.3.280
  4. Hulsmann M, Kahle R, Schneller M, Aida S, Hahn M, et al., Debris collision avoidance by means of attitude control-in-flight demonstration with TET-1, J. Space Saf. Eng. 6, 284-290 (2019). https://doi.org/10.1016/j.jsse.2019.09.003
  5. Liao H, Xie J, Zhou X, Yao C, Tang Z, et al., Compound attitude maneuver and collision avoiding control for a novel noncontact close-proximity formation satellite architecture, Int. J. Aerosp. Eng. 2022, 2606233. https://doi.org/10.1155/2022/2606233
  6. Omar SR, Bevilacqua R, Spacecraft collision avoidance using aerodynamic drag, J. Guid. Control Dyn. 43, 567-573 (2020). https://doi.org/10.2514/1.G004518
  7. Mishne D, Edlerman E, Collision-avoidance maneuver of satellites using drag and solar radiation pressure, J. Guid. Control Dyn. 40, 1191-1205 (2017). https://doi.org/10.2514/1.G002376
  8. Alfano S, Relating position uncertainty to maximum conjunction probability, J. Astronaut. Sci. 53, 193-205 (2005). https://doi.org/10.1007/BF03546350
  9. Singh AK, Bhargawa A, An early prediction of 25th solar cycle using Hurst exponent. Astrophys. Space Sci. 362, 199 (2017). https://doi.org/10.1007/s10509-017-3180-2