• Title/Summary/Keyword: Safety ECU

Search Result 53, Processing Time 0.026 seconds

Study on the Shifting Transients by Interfacing ECU with Simulation Program (자동변속장치 ECU와 프로그램의 Interface에 의한 변속과도특성 연구)

  • 조한상;박영일
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.21-29
    • /
    • 1995
  • The automotive transmission is the principal component of the power transmission system which converts the engine power into the adjustable power for the vehicle driving system. To the unskilled driver the automization of transmission is required for the safety and fuel economy. In this study, the dynamic model of the automotive power transmission system was presented and simulation program and interface board which interface IBM-PC with ECU was devloped. Through the traveling simulation by interfacing ECU with simulation program, the shifting transients are investigated. For verification of simulation experiment was carried out, the results of simulation was agreed well with those of simulation.

  • PDF

Design and Application of Accelerated Run-in Test for ECU Quality Improvement (ECU 품질 개선을 위한 Accelerated Run-in Test 설계 및 효과고찰)

  • Cho, Hyogeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • Modern vehicle has a lot of ECU(Electronic Control Unit) products to control many parts such as engine, transmission, brake, body and so on. ECU quality is one of important factors related to vehicle quality and driver's safety. Based on Bath-tub curve which presents failure rate during product lifetime, we designed and applied Accelerated Run-in Test into manufacturing line by simulating stress amount to ECU and developing the required software and efficient test equipment for mass production. This test makes ECU products stressed through electrical and thermal stresses under excessive driving condition, which induce potential initial failure of components in the ECU during production. The outcome until these days proved that Acceleration Run-in Test have reduced initial failure rates and increased quality of ECU products in the field outstandingly.

A Study on Characteristics of Knocking in Gasoline Engine through ECU Control (ECU 제어를 통한 가솔린 엔진의 노킹 특성에 관한 연구)

  • Yang, Hyun-Soo;Lim, Ju-Hun;Chun, Dong-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.109-115
    • /
    • 2008
  • A burning principle in gasoline engine is the one of being burned, by which a mixer in air and gasoline enters a combustion chamber and causes a spark in the proper timing. This is formed, by which ECU controls the fuel-injection volume and the fuel-injection timing, and determines the performance of engine. The purpose of this study is to test the characteristics on knocking in gasoline engine with the knocking-sensor equipment and to research into the characteristics in knocking while directly controling the optimal igniting timing and the fuel-injection timing through engine ECU. Given controlling ECU by grasping the characteristics in knocking, which becomes the most problem in the engine tuning market, the tuning in a true sense will be formed in gasoline engine.

Motohawk ECU에 의한 가솔린기관의 연료분사제어 연구

  • Lee, Tong-Won;Jo, Jeong-Kwon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.279-282
    • /
    • 2009
  • Motohawk ECU(Engine Control Unit)에 의한 가솔린기관의 연료분사제어 알고리즘 연구를 통하여 연비를 절감할 수 있는 방안을 연구한다. 실제 차량엔진 ECU는 캘리브레이션 이외의 제어 알고리즘을 변경하여 구현하기가 쉽지 않으므로 상기의 프로토타입 ECU를 활용하여 연료분사제어 로직을 변경해가면서 연료분사와 관련된 여러가지 파라메터의 연구가 가능하다. 또한 프로그래밍은 Matlab과 Simulink로 구현할 수 있어서 최적연비를 얻기 위한 로직의 구현을 실시간으로 할 수 있으며 차량의 특성상 프로그램의 임베딩이 가능하여야 하므로 이러한 목적에 프로토타입 ECU에 의한 로직개발은 많은 장점이 있다. 이러한 ECU를 활용하여 여러 가지 제어 변수에 의한 최적화된 연료분사 로직의 설계 및 미치는 영향을 평가한다.

  • PDF

A Study on a Test Platform for AWS (All-Wheel-Steering) ECU (Electronic Control Unit) of the Bi-modal Tram (저상굴절버스 조향시스템 전자제어장치의 테스트플랫폼 구축에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyeong-Ho;Park, Tae-Won;Kim, Ki-Jung;Choi, Sung-Hun;Kim, Young-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1051-1059
    • /
    • 2008
  • In the development process of an ECU (Electrical Control Unit), numerous tests are necessary to evaluate the performance and control algorithm. The vehicle based test is expensive and requires long time. Also, it is difficult to guarantee the safety of the test driver. To overcome the various problems faced in the development process, the ECU test has been done using HIL (Hardware In the Loop). The HIL environment has the actual hardware including an ECU and a virtual vehicle model. In this paper, the test platform environment is devloped for the AWS ECU black box test. The test platform is built on HIL (Hardware In the Loop) architecture. Using the developed test platform, the control algorithm of the AWS ECU can be evaluated under the virtual driving condition of the bi-modal tram. Driving conditions, such as a front steering angle and vehicle velocity, are defined through the PC (Personal Computer) input. Input signals are transformed to electrical signals in the PC. These signals become the input conditions of the AWS ECU. The AWS ECU is stimulated by arbitory input conditons, and responses of the system are observed.

  • PDF

The Design of an Integrated ECU and Navigation Information based IoT Head-Up Display System for Vehicles (ECU와 내비게이션 정보를 융합한 IoT Head Up Display(HUD) 시스템 설계)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.172-177
    • /
    • 2021
  • The HUD (Head-up Display) device for vehicles has gradually been advanced in connection with ADAS (Advanced Driver Assistant System) for the safety and the convenience of driving. In this paper, the major features (e.g. speed, RPM, etc.) of vehicles is received through the ECU and the route information is received through the navigating API, configurating the integrated GUI. And, the optical system is configured based on DLP (Digital Light Processing) to evaluate the visibility depending on the resolution change of the GUI. The IoT HUD system proposed in this paper has the scalability to flexibly add not only the ECU but also various cloud-based driving-related information.

An Experimental Study on the Safety Standard of Electronic Throttle Control System (전자식 가속제어장치 안전기준에 대한 실험적 고찰)

  • Yun, Kyungcheol;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Optimal engine control is needed to cope with the global environmental regulations that are globally enforced. For optimum engine control, the electronic throttle control system (ETCS) is a prerequisite. Automotive makers are having an effect on reducing emissions and improving fuel economy by applying ETCS which is designed to secure stability. The ETCS controls the output of the throttle valve by passing the output value of the accelerator position sensor (APS) to the engine control unit (ECU). In this study, the authors investigated the safety standards of domestic and overseas accelerator control system and tried to understand how the air flow control affects the engine output by replacing the throttle. The authors suggest an improvement proposal of safety standard based on the result of driving evaluation by various modes.

Study for Failure Cases on Engine Electronic Control Computer in Liquid Petroleum Gas vehicle (액화석유가스 자동차 엔진의 전자제어 컴퓨터의 고장사례 연구)

  • Lee, Il-Kwon;Kim, Young-Gyu;Kook, Chang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.28-33
    • /
    • 2011
  • The purpose of this paper analyzes and studies to improve the failure cases on the computer that one of electronic control elements for engine in liquified petroleum gas vehicle. The first case, it certified the non-starting phenomenon of engine that it's electronic control unit didn't control the fuel for idle speed actuator because of no given action signal in slow-cut solenoid valve. The second case, it knew the bad condition phenomenon of engine and back-fire by the wire melting of ignition coil and firing of transistor being inside ECU. The third case, it certified the action stoping phenomenon of engine and malfunctioning signal for engine ECU because of leakage of current and an excess current by moisture inflowing inside ECU curcuit plate. Therefore, it is thought that will elevate the durability and reliability of engine computer throughout procure of quality.

Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication (차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계)

  • Koag, Hyun Chul;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

Design and Development of a Functional Safety Compliant Electric Power Steering System

  • Lee, Kyung-Jung;Lee, Ki-Ho;Moon, Chanwoo;Chang, Hyuk-Jun;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1915-1920
    • /
    • 2015
  • ISO 26262 is an international standard for the functional safety of electric and electronic systems in vehicles, and this standard has become a major issue in the automotive industry. In this paper, a functional safety compliant electronic control unit (ECU) for an electric power steering (EPS) system and a demonstration purposed EPS system are developed, and a software and hardware structure for a safety critical system is presented. EPS is the most recently introduced power steering technology for vehicles, and it can improve driver’s convenience and fuel efficiency. In conformity with the design process specified in ISO 26262, the Automotive Safety Integrity Level (ASIL) of an EPS system is evaluated, and hardware and software are designed based on an asymmetric dual processing unit architecture and an external watchdog. The developed EPS system effectively demonstrates the fault detection and diagnostic functions of a functional safety compliant ECU as well as the basic EPS functions.