Digital watermarking is technique, which owner's information is inserted in digital image, with intention to protecting a copyright of digital image. In watermarking for copyright and authentication, watermark shouldn't be distorted or disappeared after general image processes like a compression and filtering. In this paper, we present a new digital image watermarking algorithm which combines the discrete wavelet transform (DWT) and the singular value decomposition (SVD). Simulation results show that the newly proposed algorithm is not only robust nevertheless variable attacks like noise, filtering and JPEG compression but also secure in application.
This paper presents a three-dimensional (3D) head pose estimation algorithm for robust face recognition. Given a 3D input image, we automatically extract several important 3D facial feature points based on the facial geometry. To estimate 3D head pose accurately, we propose an Error Compensated-SVD (EC-SVD) algorithm. We estimate the initial 3D head pose of an input image using Singular Value Decomposition (SVD) method, and then perform a Pose refinement procedure in the normalized face space to compensate for the error for each axis. Experimental results show that the proposed method is capable of estimating pose accurately, therefore suitable for 3D face recognition.
본 논문에서는 위성 영상과 같은 원격 센싱 영상 등의 저 대비 영상의 화질을 개선하기 위하여 SVD (singular value decomposition)를 이용한 적응적 히스토그램 평활화 기법을 제안한다. 저 대비 영상의 특이값과 히스토그램 평활화 영상의 특이값을 결합하되, 사용자 파라미터를 통해 영상의 화질을 조절할 수 있도록 적응적 화질 개선 기법을 제안한다. 위성 영상을 비롯한 다양한 영상을 대상으로 실험한 결과 제안하는 방법이 기존의 히스토그램 평활화 기법 및 이를 개선한 방법에 비해 GSD (global standard deviation)으로 측정한 객관적 수치 측면에서 우수한 성능을 나타내고, 주관적 화질 측면에서 자연스럽고 영상의 어두운 영역 및 밝은 영역에서의 디테일 보존 성능이 우수함을 확인할 수 있다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.11C
/
pp.1118-1122
/
2003
In this paper, we propose a new invisible digital watermarking scheme based on wavelet transform using singular value decomposition. Embedding process is started by decomposing the lowest frequency band image with 3${\times}$3 block among which we define the watermark block chosen by a key set; entropy and condition number of the block. A watermark is embedded in the singular values of each watermark blocks. This provides a robust watermarking in lowest possible time-frequency domain. To detect the watermark, we are locally modeling an attack as 3${\times}$3 matrices on the watermark blocks. Combining with the SVD and the attack matrices, we estimate watermark set corresponding to the watermark blocks. In each watermark block, we determine an optimal watermark which is justified by the T-testing. A numerical experiment shows that the proposed watermarking scheme efficiently detects the watermarks from several JPEG attacks.
While SVD and Gaussian elimination method were applied to the additive damped least squares(DLS), the convergence and the stability of the optimization process were examined in a triplet-type camera lens-system where the condition number is well conditioned. DLS with SVD method generated a suitable merit function but this merit function may be trapped in a local minimum by the nonlinearity of error function. Therefore, the least camera lens-system was further designed by the global optimization method is grid method, and this method is adopted to get merit function that convergent to global minimum without local minimum trapping.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38C
no.1
/
pp.89-96
/
2013
This paper presents an improved clutter signal removal algorithm using Singular Value Decomposition(SVD). For indoor positioning system using IR-UWB Radar, the target signal is extracted from received signal. We use clutter signal removal algorithm using SVD for target signal extraction. Clutter signal removal algorithm using SVD has the advantage of operation but the disadvantage of high computational complexity. In this paper, we propose a method to improve computational complexity. As the experimental results, it is confirmed that the method presented in this paper improve the computational complexity of clutter removal algorithm using SVD.
Recommender System can help users to find products to Purchase. A representative method for recommender systems is collaborative filtering (CF). It predict products that user may like based on a group of similar users. User information is based on user's ratings for products and similarities of users are measured by ratings. As user is increasing tremendously, the performance of the pure collaborative filtering is lowed because of high dimensionality and scarcity of data. We consider the effect of dimension deduction in collaborative filtering to cope with scarcity of data experimentally. We suggest that SVD improves the performance of collaborative filtering in comparison with pure collaborative filtering.
Transactions of the Korean Society of Mechanical Engineers A
/
v.21
no.8
/
pp.1311-1321
/
1997
In multibody dynamics, differential and algebraic equations which can satisfy both equation of motion and kinematic constraint equation should be solved. To solve these equations, coordinate partitioning method and constraint stabilization method are commonly used. In the coordinate partitioning method, the coordinates are divided into independent and dependent and coordinates. The most typical coordinate partitioning method are LU decomposition, QR decomposition, and SVD (singular value decomposition). The objective of this research is to find an efficient coordinate partitioning method in the dynamic analysis of flexible multibody systems. Comparing two coordinate partitioning methods, i.e. LU and QR decomposition in the flexible multibody systems, a new hybrid coordinate partitioning method is suggested for the flexible multibody analysis.
Journal of the Korean Society for information Management
/
v.38
no.2
/
pp.113-127
/
2021
The purpose of this study is to propose a personalized book recommendation system to promote the use of university libraries. In particular, unlike many recommended services that are based on existing users' preferences, this study proposes a method that derive evaluation metrics using individual users' book rental history and tendencies, which can be an effective alternative when users' preferences are not available. This study suggests models using two matrix decomposition methods: Singular Value Decomposition(SVD) and Stochastic Gradient Descent(SGD) that recommend books to users in a way that yields an expected preference score for books that have not yet been read by them. In addition, the model was implemented using a user-based collaborative filtering algorithm by referring to book rental history of other users that have high similarities with the target user. Finally, user evaluation was conducted for the three models using the derived evaluation metrics. Each of the three models recommended five books to users who can either accept or reject the recommendations as the way to evaluate the models.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2002.11a
/
pp.407-411
/
2002
Ternary sequences are digital codes consisting of discrete values -1, 0, and 1 only. They are advantageous in that the correlation can be carried out using additions only. Also, they feature an ideal circular autocorrelation function, but in channel characterization tasks, the usual requirement is that the linear autocorrelation function be ideal, i.e., a Kronecker delta function. In this article, we consider two approaches to improving their linear autocorrelation or crosscorrelation properties: one is an inverse filtering method with thresholding, and the other is a singular value decomposition (SVD) method. Both methods are simulated under noisy circumstances. The inverse filtering method resulted in an improvement in peak sidelobe level of about 11 dB at an SNR of 30 dB, and the SVD method showed similar performances, albeit more sensitive to noise depending on the singular value selection strategy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.