• Title/Summary/Keyword: STARS 2.1

Search Result 648, Processing Time 0.025 seconds

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • 천문학회지
    • /
    • 제51권2호
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

Diverse Chemo-Dynamical Properties of Nitrogen-Rich Stars Identified from Low-Resolution Spectra

  • Changmin Kim;Young Sun Lee;Timothy C. Beers;Young Kwang Kim
    • 천문학회지
    • /
    • 제56권1호
    • /
    • pp.59-73
    • /
    • 2023
  • The second generation of stars in the globular clusters (GCs) of the Milky Way (MW) exhibit unusually high N, Na, or Al, compared to typical Galactic halo stars at similar metallicities. The halo field stars enhanced with such elements are believed to have originated in disrupted GCs or escaped from existing GCs. We identify such stars in the metallicity range -3.0 < [Fe/H] < 0.0 from a sample of ~36,800 giant stars observed in the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey, and present their dynamical properties. The N-rich population (NRP) and N-normal population (NNP) among our giant sample do not exhibit similarities in either in their metallicity distribution function (MDF) or dynamical properties. We find that, even though the MDF of the NRP looks similar to that of the MW's GCs in the range of [Fe/H] < -1.0, our analysis of the dynamical properties does not indicate similarities between them in the same metallicity range, implying that the escaped members from existing GCs may account for a small fraction of our N-rich stars, or the orbits of the present GCs have been altered by the dynamical friction of the MW. We also find a significant increase in the fraction of N-rich stars in the halo field in the very metal-poor (VMP; [Fe/H] < -2.0) regime, comprising up to ~20% of the fraction of the N-rich stars below [Fe/H] = -2.5, hinting that partially or fully destroyed VMP GCs may have in some degree contributed to the Galactic halo. A more detailed dynamical analysis of the NRP reveals that our sample of N-rich stars do not share a single common origin. Although a substantial fraction of the N-rich stars seem to originate from the GCs formed in situ, more than 60% of them are not associated with those of typical Galactic populations, but probably have extragalactic origins associated with Gaia Sausage/Enceladus, Sequoia, and Sagittarius dwarf galaxies, as well as with presently unrecognized progenitors.

Low-mass evolved stars through the eyes of ALMA

  • Kim, Hyosun
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.118.1-118.1
    • /
    • 2014
  • Stars create and expel new chemical elements and dust at the end of the stellar life cycle. Therefore, understanding the evolved stars, their mass loss process, and the conditions of the returning material to be mixed with the surrounding interstellar medium is an important step toward studies on the new generation of stars as well as the evolution of cosmic elements in galactic scale. I will review the first results from the ALMA Early Science on the evolved stars and direct future works.

  • PDF

Statistical Properties of Flare Variability, Energy, and Frequency in Low-Mass Stars

  • 정서원;변요익
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.29.2-29.2
    • /
    • 2011
  • Although stellar flares have a long history of observations, there are few concrete understanding about underlying physical processes and meaningful correlations with other stellar properties. Most of previous observations dealt with only a small number of sample stars, and therefore not sufficient to support generalized statistical studies. Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2,500 M-dwarf stars and successfully identified 606 flare events from 422 stars. This is a rare attempt to estimate true flare rates and properties among many stars of the same age and mass group. For each flare, we considered both observational and physical parameters including flare shape, duration before and after the peak, baseline magnitude before and after the peak, peak magnitudes, total energy and peak energy, etc. We find significant correlations between some of key parameters over a wide range of energy ($Er=10^{32}{\sim}10^{36}ergs$). For instance, regardless of stellar luminosities, the energy power spectrum of flares can be approximated by a power law (${\beta}=0.83-0.97$). This suggests that flares follow similar physical mechanisms for atmospheric heating and cooling among these low-mass stars. From this MMT data set, we derived an average flaring rate of $0.019 hr^{-1}$ among flare stars and $0.003 hr^{-1}$ for all M-dwarf candidates. We will report the details of our analysis and discuss physical implications.

  • PDF

Chemical Distributions of Carbon-Enhanced Metal-Poor (CEMP) Stars from the Baryon Oscillations Spectroscopic Survey (BOSS)

  • Lee, Young Sun;Beers, Timothy C.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.80.2-80.2
    • /
    • 2015
  • We present spatial and chemical distributions of Carbon-Enhanced Metal-Poor (CEMP) stars in the Milky Way's halo, as observed by the Baryon Oscillation Spectroscopic Survey (BOSS). Although the BOSS was designed to obtain spectra of galaxies and quasars, it also observed numerous metal-poor main-sequence turnoff stars for the purpose of flux calibration. The stars observed in the BOSS are two magnitudes fainter (15.5 < g < 19.2) than those in the legacy SDSS, thus it is an extremely useful sample to probe the distant halo. Using effective temperatures, surface gravities, [Fe/H], and [C/Fe] derived for these stars by the SEGUE Stellar Parameter Pipeline (SSPP), we investigate the spatial distribution of [Fe/H] and [C/Fe], the distribution of [C/Fe], and frequency of CEMP stars among these stars. These tools enable characterization of the origin of the halo and its initial mass function.

  • PDF

POLYCYCLIC AROMATIC HYDROCARBON (PAH) MOLECULES IN THE DISKS AROUND LOW MASS STARS

  • 김경희
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.36.1-36.1
    • /
    • 2015
  • We present $5-14{\mu}m$ Infrared Spectrograph spectra of 14 T Tauri stars which show Polycyclic Aromatic Hydrocarbon (PAH) features and reside in 0.7 pc from ${\Theta}_1$ Ori C. The spectral types of nine out of 11 stars have spectral type information, with types ranging from K7-M5. These stars do not supply strong enough UV photons to excite PAH emission in their disks. Therefore, we consider the detection of PAH emission in disks around low mass stars illuminated by an external source of UV photons, namely, from Trapezium OB association, including ${\Theta}_1$ Ori C. The morphological features of PAH emission from most disks around K-M type host stars are unique, not belonging to any known classes of PAH features. We found that the PAH emission strengths decrease as the projected distance of the objects from ${\Theta}_1$ Ori C increase. We suggest future far-IR and submm/mm observations for better understanding of the characteristics and distribution of PAHs in these disks.

  • PDF

X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

  • Engle, Scott G.;Guinan, Edward F.
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.181-189
    • /
    • 2012
  • To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, ${\delta}$ Cep and ${\beta}$ Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating $10^4$ K up to ${\sim}3{\times}10^5$ K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range ${\varphi}{\approx}0.8-1.0$ and vary by factors as large as $10{\times}$. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log $L_X{\approx}28.5-29.1$ ergs/sec, and plasma temperatures in the $2-8{\times}106$ K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven ${\alpha}^2$ equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 ${\varphi}$) favor the shock heating mechanism hypothesis.

A Deep Optical Photometric Study of the Massive Young Open Clusters in the Sagittarius-Carina Spiral Arm

  • Hur, Hyeonoh
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.44.1-44.1
    • /
    • 2016
  • The Sagittarius-Carina spiral arm in the Galaxy contains several massive young open clusters. We present a deep optical photometric study on the massive young open clusters in the Sagittarius-Carina arm, Westerlund 2 and the young open clusters in the ${\eta}$ Carina nebula. Westerlund 2 is a less studied starburst-type cluster in the Galaxy. An abnormal reddening law for the intracluster medium of the young starburst-type cluster Westerlund 2 is determined to be $R_{V,cl}=4.14{\pm}0.08$. The distance modulus is determined from zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams of the early-type members to be $V_0-M_V=13.9{\pm}0.14mag$. The pre-main sequence (PMS) members of Westerlund 2 are selected by identifying the optical counterparts of X-ray emission sources from the Chandra X-ray observation and mid-infrared emission sources from the Spitzer/IRAC (the Infrared Array Camera) observation. The initial mass function (IMF) shows a slightly flat slope of ${\Gamma}=-1.1{\pm}0.1$ down to $5M_{\odot}$. The age of Westerlund 2 is estimated to be. 1.5 Myr from the main-sequence turn-on luminosity and the age distribution of PMS stars. The ${\eta}$ Carina nebula is the best laboratory for the investigation of the Galactic massive stars and low-mass star formation under the influence of numerous massive stars. We have performed deep wide-field CCD photometry of stars in the ${\eta}$ Carina nebula to determine the reddening law, distance, and the IMF of the clusters in the nebula. We present VRI and $H{\alpha}$ photometry of 130,571 stars from the images obtained with the 4m telescope at Cerro Tololo Inter-American Observatory (CTIO). RV,cl in the η Carina nebula gradually decreases from the southern part (~4.5, around Trumpler 14 and Trumpler 16) to the northern part around Trumpler 15 (~3.5). Distance to the young open clusters in the ${\eta}$ Carina nebula is partly revised based on the zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams (CMDs) and the (semi-) reddening-independent CMDs. We select the PMS members and candidates by identifying the optical counterparts of X-ray sources from the Chandra Carina Complex Survey and mid-infrared excess emission stars from the Spitzer Vela-Carina survey. From the evolutionary stage of massive stars and PMS stars, we obtain that the northern young open cluster Trumpler 15 is distinctively older than the southern young open clusters, Trumpler 14 (${\leq}2.5 Myr$) and Trumpler 16 (2.5-3.5 Myr). The slopes of the IMF of Trumpler 14, Trumpler 15, and Trumpler 16 are determined to be $-1.2{\pm}0.1$, $-1.5{\pm}0.3$, and $-1.1{\pm}0.1$, respectively. Based on the RV,cl of several young open clusters determined in this work and the previous studies of our group, We suggest that higher RV,cl values are commonly found for very young open clusters with the age of < 4 Myr. We also confirm the correlation between the slope of the IMF and the surface mass density of massive stars.

  • PDF

Abundances of refractory elements for stars with extrasolar planets : New samples

  • 박선경;강원석;이상각;이정은
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.147.1-147.1
    • /
    • 2011
  • We investigate the chemical differentiation in F, G, K type stars with and without planets to extend the work by Kang et al. (2011) to various spectral types. Since the primordial chemical composition has been preserved in the stellar atmosphere, stellar metallicity can provide the information on the primordial material, which is the potential building block of planets. Therefore, we can explore the favored conditions for planet formation through the comparison of chemical compositions between planet-host stars (PHSs) and stars without planets. In this work, we analyze 19 F, G, and K type stars. In each spectrum, we measure equivalent widths (EWs) of Fe, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni using TAME (Tools for Automatic Measurement of Equivalent width). The abundances of these species can be derived with the measured EWs and MOOG code (Sneden 1973). Like results by precedent studies, we find that planet-host stars have abundances higher than stars without planets. The typical difference in the abundances of Na, Mn, Co and Ni is $0.4{\pm}0.2dex$. In addition, as found in Kang et al. (2011), Mn is the most different element between PHSs and comparison stars.

  • PDF

WFIRST ULTRA-PRECISE ASTROMETRY II: ASTEROSEISMOLOGY

  • Gould, Andrew;Huber, Daniel;Penny, Matthew;Stello, Dennis
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.93-104
    • /
    • 2015
  • WFIRST microlensing observations will return high-precision parallaxes, σ(π) . 0.3 µas, for the roughly 1 million stars with H < 14 in its 2.8 deg2 field toward the Galactic bulge. Combined with its 40,000 epochs of high precision photometry (∼ 0.7 mmag at Hvega = 14 and ∼ 0.1 mmag at H = 8), this will yield a wealth of asteroseismic data of giant stars, primarily in the Galactic bulge but includindvvvvvg a substantial fraction of disk stars at all Galactocentric radii interior to the Sun. For brighter stars, the astrometric data will yield an external check on the radii derived from the two asteroseismic parameters, the large-frequency separation <∆νnl> and the frequency of maximum oscillation power νmax, while for the fainter ones, it will enable a mass measurement from the single measurable asteroseismic parameter νmax. Simulations based on Kepler data indicate that WFIRST will be capable of detecting oscillations in stars from slightly less luminous than the red clump to the tip of the red giant branch, yielding roughly 1 million detections.