DOI QR코드

DOI QR Code

Diverse Chemo-Dynamical Properties of Nitrogen-Rich Stars Identified from Low-Resolution Spectra

  • Changmin Kim (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Young Sun Lee (Department of Astronomy and Space Science, Chungnam National University) ;
  • Timothy C. Beers (Department of Physics and Astronomy and JINA Center for the Evolution of the Elements, University of Notre Dame) ;
  • Young Kwang Kim (Department of Astronomy and Space Science, Chungnam National University)
  • Received : 2023.02.23
  • Accepted : 2023.04.24
  • Published : 2023.12.30

Abstract

The second generation of stars in the globular clusters (GCs) of the Milky Way (MW) exhibit unusually high N, Na, or Al, compared to typical Galactic halo stars at similar metallicities. The halo field stars enhanced with such elements are believed to have originated in disrupted GCs or escaped from existing GCs. We identify such stars in the metallicity range -3.0 < [Fe/H] < 0.0 from a sample of ~36,800 giant stars observed in the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey, and present their dynamical properties. The N-rich population (NRP) and N-normal population (NNP) among our giant sample do not exhibit similarities in either in their metallicity distribution function (MDF) or dynamical properties. We find that, even though the MDF of the NRP looks similar to that of the MW's GCs in the range of [Fe/H] < -1.0, our analysis of the dynamical properties does not indicate similarities between them in the same metallicity range, implying that the escaped members from existing GCs may account for a small fraction of our N-rich stars, or the orbits of the present GCs have been altered by the dynamical friction of the MW. We also find a significant increase in the fraction of N-rich stars in the halo field in the very metal-poor (VMP; [Fe/H] < -2.0) regime, comprising up to ~20% of the fraction of the N-rich stars below [Fe/H] = -2.5, hinting that partially or fully destroyed VMP GCs may have in some degree contributed to the Galactic halo. A more detailed dynamical analysis of the NRP reveals that our sample of N-rich stars do not share a single common origin. Although a substantial fraction of the N-rich stars seem to originate from the GCs formed in situ, more than 60% of them are not associated with those of typical Galactic populations, but probably have extragalactic origins associated with Gaia Sausage/Enceladus, Sequoia, and Sagittarius dwarf galaxies, as well as with presently unrecognized progenitors.

Keywords

Acknowledgement

We thank an anonymous referee for a careful review of this paper, which has improved the clarity of its presentation. Y.S.L. acknowledges support from the National Research Foundation (NRF) of Korea grant funded by the Ministry of Science and ICT (NRF-2021R1A2C1008679). Y.S.L. also gratefully acknowledges partial support for his visit to the University of Notre Dame from OISE-1927130: The International Research Network for Nuclear Astrophysics (IReNA), awarded by the US National Science Foundation. Y.K.K. acknowledges support from Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (NRF2021R1A6A3A01086446). T.C.B. acknowledges partial support for this work from grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINACEE), awarded by the U.S. National Science Foundation. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics | Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofisica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut fur Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg), Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut fur Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatario Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autonoma de Mexico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. The Guoshoujing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) is a National Major Scientific Project which is built by the Chinese Academy of Sciences, funded by the National Development and Reform Commission, and operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences.

References

  1. Abdurro'uf, Accetta, K., Aerts, C., et al. 2022, ApJS, 259, 35
  2. Allende Prieto, C., Sivarani, T., Beers, T. C., et al. 2008, AJ, 136, 2070
  3. An, D., Beers, T. C., Lee, Y. S., & Masseron, T. 2023, ApJ, submitted
  4. Bastian, N., & Lardo, C. 2018, ARA&A, 56, 83
  5. Baumgardt, H., & Vasiliev, E. 2021, MNRAS, 505, 5957
  6. Beers, T. C., Chiba, M., Yoshii, Y., et al. 2000, AJ, 119, 2866
  7. Beers, T. C., Carollo, D., Ivezic, Z., et al. 2012, ApJ, 746, 34
  8. Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E., & Deason, A. J. 2018, MNRAS, 478, 611
  9. Belokurov, V., Sanders, J. L., Fattahi, A., et al. 2020, MNRAS, 494, 3880
  10. Bennett, M., & Bovy, J. 2019, MNRAS, 482, 1417
  11. Bland-Hawthorn, J., & Gerhard, O. 2016, ARA&A, 54, 529
  12. Carollo, D., Martell, S. L., Beers, T. C., & Freeman, K. C. 2013, ApJ, 769, 87
  13. Carollo, D., Beers, T. C., Lee, Y. S., et al. 2007, Nature, 450, 1020
  14. Carollo, D., Beers, T. C., Chiba, M., et al. 2010, ApJ, 712, 692
  15. Carretta, E. 2016, in The General Assembly of Galaxy Halos: Structure, Origin and Evolution, ed. A. Bragaglia, M. Arnaboldi, M. Rejkuba, & D. Romano, Vol. 317, 97-103
  16. Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010, A&A, 516, A55
  17. Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A&A, 505, 117
  18. Chiba, M., & Beers, T. C. 2000, AJ, 119, 2843
  19. Colucci, J. E., Bernstein, R. A., Cameron, S., McWilliam, A., & Cohen, J. G. 2009, ApJ, 704, 385
  20. Colucci, J. E., Bernstein, R. A., Cameron, S. A., & McWilliam, A. 2012, ApJ, 746, 29
  21. Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Research in Astronomy and Astrophysics, 12, 1197 https://doi.org/10.1088/1674-4527/12/9/003
  22. Elmegreen, B. G., & Hunter, D. A. 2010, ApJ, 712, 604
  23. Fernandez-Trincado, J. G., Beers, T. C., Tang, B., et al. 2019, MNRAS, 488, 2864
  24. Fernandez-Trincado, J. G., Robin, A. C., Moreno, E., et al. 2016, ApJ, 833, 132
  25. Fernandez-Trincado, J. G., Zamora, O., Garcia-Hernandez, D. A., et al. 2017, ApJ, 846, L2
  26. Fernandez-Trincado, J. G., Beers, T. C., Minniti, D., et al. 2020, ApJ, 903, L17
  27. Fernandez-Trincado, J. G., Beers, T. C., Minniti, D., et al. 2021a, A&A, 648, A70
  28. Fernandez-Trincado, J. G., Beers, T. C., Queiroz, A. B. A., et al. 2021b, ApJ, 918, L37
  29. Fernandez-Trincado, J. G., Beers, T. C., Barbuy, B., et al. 2022, A&A, 663, A126
  30. Forbes, D. A., & Bridges, T. 2010, MNRAS, 404, 1203
  31. Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1
  32. Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385
  33. Han, D. R., Lee, Y. S., Kim, Y. K., & Beers, T. C. 2020, ApJ, 896, 14
  34. Hanke, M., Koch, A., Prudil, Z., Grebel, E. K., & Bastian, U. 2020, A&A, 637, A98
  35. Harris, W. E. 1996, AJ, 112, 1487
  36. Harris, W. E. 2010, arXiv e-prints, arXiv:1012.3224
  37. Hasselquist, S., Shetrone, M., Cunha, K., et al. 2016, ApJ, 833, 81
  38. Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, Nature, 563, 85
  39. Horta, D., Mackereth, J. T., Schiavon, R. P., et al. 2021, MNRAS, 500, 5462
  40. Huang, Y., Schonrich, R., Zhang, H., et al. 2020, ApJS, 249, 29
  41. Hughes, M. E., Pfeffer, J. L., Martig, M., et al. 2020, MNRAS, 491, 4012
  42. Jonsson, H., Holtzman, J. A., Allende Prieto, C., et al. 2020, AJ, 160, 120
  43. Karinkuzhi, D., & Goswami, A. 2015, MNRAS, 446, 2348
  44. Kawata, D., Bovy, J., Matsunaga, N., & Baba, J. 2019, MNRAS, 482, 40
  45. Kim, C., Lee, Y. S., Beers, T. C., & Masseron, T. 2022, JKAS, 55, 23
  46. Kim, Y. K., Lee, Y. S., & Beers, T. C. 2019, ApJ, 882, 176
  47. Kim, Y. K., Lee, Y. S., Beers, T. C., & Koo, J.-R. 2021, ApJ, 911, L21
  48. Kisku, S., Schiavon, R. P., Horta, D., et al. 2021, MNRAS, 504, 1657
  49. Koch, A., Grebel, E. K., & Martell, S. L. 2019, A&A, 625, A75
  50. Komiya, Y., Suda, T., Minaguchi, H., et al. 2007, ApJ, 658, 367
  51. Koo, J.-R., Lee, Y. S., Park, H.-J., Kim, Y. K., & Beers, T. C. 2022, ApJ, 925, 35
  52. Kruijssen, J. M. D., Pelupessy, F. I., Lamers, H. J. G. L. M., et al. 2012, MNRAS, 421, 1927
  53. Kruijssen, J. M. D., Pelupessy, F. I., Lamers, H. J. G. L. M., Portegies Zwart, S. F., & Icke, V. 2011, MNRAS, 414, 1339
  54. Kruijssen, J. M. D., Pfeffer, J. L., Crain, R. A., & Bastian, N. 2019a, MNRAS, 486, 3134
  55. Kruijssen, J. M. D., Pfeffer, J. L., Reina-Campos, M., Crain, R. A., & Bastian, N. 2019b, MNRAS, 486, 3180
  56. Lee, A., Lee, Y. S., Kim, Y. K., Beers, T. C., & An, D. 2023, ApJ, 945, 56 https://doi.org/10.3847/1538-4357/acb6f5
  57. Lee, Y. S., Beers, T. C., Kim, Y. K., et al. 2017, ApJ, 836, 91
  58. Lee, Y. S., Suda, T., Beers, T. C., & Stancliffe, R. J. 2014, ApJ, 788, 131
  59. Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008a, AJ, 136, 2022
  60. Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008b, AJ, 136, 2050
  61. Lee, Y. S., Beers, T. C., Allende Prieto, C., et al. 2011a, AJ, 141, 90
  62. Lee, Y. S., Beers, T. C., An, D., et al. 2011b, ApJ, 738, 187
  63. Lee, Y. S., Beers, T. C., Masseron, T., et al. 2013, AJ, 146, 132
  64. Lee, Y. S., Beers, T. C., Carlin, J. L., et al. 2015, AJ, 150, 187
  65. Lee, Y.-W., Kim, J. J., Johnson, C. I., et al. 2019, ApJ, 878, L2
  66. Lim, D., Lee, Y.-W., Koch, A., et al. 2021, ApJ, 907, 47
  67. Lindegren, L., Klioner, S. A., Hernandez, J., et al. 2021, A&A, 649, A2
  68. Majewski, S. R., Nidever, D. L., Smith, V. V., et al. 2012, ApJ, 747, L37
  69. Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94
  70. Martell, S. L., & Grebel, E. K. 2010, A&A, 519, A14
  71. Martell, S. L., Smolinski, J. P., Beers, T. C., & Grebel, E. K. 2011, A&A, 534, A136
  72. Martell, S. L., Shetrone, M. D., Lucatello, S., et al. 2016, ApJ, 825, 146
  73. Massari, D., Koppelman, H. H., & Helmi, A. 2019, A&A, 630, L4
  74. Milone, A. P., Marino, A. F., Piotto, G., et al. 2015, MNRAS, 447, 927
  75. Myeong, G. C., Belokurov, V., Aguado, D. S., et al. 2022, ApJ, 938, 21
  76. Myeong, G. C., Evans, N. W., Belokurov, V., Sanders, J. L., & Koposov, S. E. 2018, ApJ, 863, L28
  77. Myeong, G. C., Vasiliev, E., Iorio, G., Evans, N. W., & Belokurov, V. 2019, MNRAS, 488, 1235
  78. Naidu, R. P., Conroy, C., Bonaca, A., et al. 2020, ApJ, 901, 48
  79. Pancino, E., Romano, D., Tang, B., et al. 2017, A&A, 601, A112
  80. Pereira, C. B., Holanda, N., Drake, N. A., & Roig, F. 2019, AJ, 157, 70
  81. Pereira, C. B., Smith, V. V., Drake, N. A., et al. 2017, MNRAS, 469, 774
  82. Pfeffer, J., Bastian, N., Kruijssen, J. M. D., et al. 2019, MNRAS, 490, 1714
  83. Pfeffer, J., Kruijssen, J. M. D., Crain, R. A., & Bastian, N. 2018, MNRAS, 475, 4309
  84. Phillips, S. G., Schiavon, R. P., Mackereth, J. T., et al. 2022, MNRAS, 510, 3727
  85. Piotto, G., Milone, A. P., Bedin, L. R., et al. 2015, AJ, 149, 91
  86. Placco, V. M., Frebel, A., Beers, T. C., & Stancliffe, R. J. 2014, ApJ, 797, 21
  87. Rockosi, C. M., Lee, Y. S., Morrison, H. L., et al. 2022, ApJS, 259, 60
  88. Rostami Shirazi, A., Haghi, H., Khalaj, P., Asl, A. F., & Hasani Zonoozi, A. 2022, MNRAS, 513, 3526
  89. Savino, A., & Posti, L. 2019, A&A, 624, L9
  90. Schiavon, R. P., Zamora, O., Carrera, R., et al. 2017, MNRAS, 465, 501
  91. Schonrich, R., Binney, J., & Dehnen, W. 2010, MNRAS, 403, 1829
  92. Smolinski, J. P., Lee, Y. S., Beers, T. C., et al. 2011, AJ, 141, 89
  93. Suda, T., Komiya, Y., Yamada, S., et al. 2013, MNRAS, 432, L46
  94. Tang, B., Fernandez-Trincado, J. G., Liu, C., et al. 2020, ApJ, 891, 28
  95. Tang, B., Wang, Y., Huang, R., et al. 2021, ApJ, 908, 220
  96. Thomas, G. F., Jensen, J., McConnachie, A., et al. 2020, ApJ, 902, 89
  97. Vasiliev, E. 2019, MNRAS, 484, 2832
  98. Vasiliev, E., & Baumgardt, H. 2021, MNRAS, 505, 5978
  99. Wan, Z., Lewis, G. F., Li, T. S., et al. 2020, Nature, 583, 768
  100. Xiang, M., Ting, Y.-S., Rix, H.-W., et al. 2019, ApJS, 245, 34
  101. Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377
  102. York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579