References
- Ackermann, M., Ajello, M., Allafort, A., et al. 2011, A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble, Science, 334, 1103 https://doi.org/10.1126/science.1210311
- Amato, E. 2014, The Theory of Pulsar Wind Nebulae, IJMPS, 28, 1460160
- Binns, W. R., Wiedenbeck, M. E., Arnould, M., et al. 2005, Cosmic-Ray Neon, Wolf-Rayet Stars, and the Superbubble Origin of Galactic Cosmic Rays, ApJ, 634, 1 https://doi.org/10.1086/429080
- Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin, Phys. Rep., 154, 1 https://doi.org/10.1016/0370-1573(87)90134-7
- Blasi, P. 2013, The Origin of Galactic Cosmic Rays, A&A Rev., 21, 70 https://doi.org/10.1007/s00159-013-0070-7
- Bykov, A. M. 2014, Nonthermal Particles and Photons in Starburst Regions and Superbubbles, A&A Rev., 22, 77 https://doi.org/10.1007/s00159-014-0077-8
- Casse, M., & Paul, J. A. 1980, Local Gamma Rays and Cosmic-Ray Acceleration by Supersonic Stellar Winds, ApJ, 237, 236 https://doi.org/10.1086/157863
- Caprioli, D. 2015, Cosmic-Ray Acceleration and Propagation, Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), 34, 8
- Caprioli, D., & Spitkovsky, A. 2014, Simulations of Ion Acceleration at Non-Relativistic Shocks. I. Acceleration Efficiency, ApJ, 783, 91 https://doi.org/10.1088/0004-637X/783/2/91
- De Becker, M. 2007, Non-Thermal Emission Processes in Massive Binaries, A&A Rev., 14, 171 https://doi.org/10.1007/s00159-007-0005-2
- De Becker, M., Benaglia, P., Romero, G. E., & Peri, C. S. 2017, An Investigation into the Fraction of Particle Accelerators among Colliding-wind Binaries. Towards an Extension of the Catalogue, A&A, 600, A47 https://doi.org/10.1051/0004-6361/201629110
- De Becker, M., & Raucq, F. 2013 Catalogue of Particle-Accelerating Colliding-Wind Binaries, A&A, 558, A28 https://doi.org/10.1051/0004-6361/201322074
- de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, Mass Loss Rates in the Hertzsprung-Russell Diagram, A&AS, 72, 259
- del Valle, M. V., & Romero, G. E. 2012, Non-Thermal Processes in Bowshocks of Runaway Stars. Application to Zeta Ophiuchi, A&A, 543, A56 https://doi.org/10.1051/0004-6361/201218937
- del Valle, M. V., Romero, G. E., & Santos-Lima, R. 2015, Runaway Stars as Cosmic Ray Injectors inside Molecular Clouds, MNRAS, 448, 207 https://doi.org/10.1093/mnras/stu2732
- Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
- Drury, L. O'C. 2012, Origin of Cosmic Rays, Astropart. Phys., 39, 52
- Dupree, A. K. 1986, Mass Loss from Cool Stars, ARA&A, 24, 377 https://doi.org/10.1146/annurev.aa.24.090186.002113
-
Ekstrom, S., Georgy, C., Eggenberger, P., et al. 2012, Grids of Stellar Models with Rotation I. Models from 0.8 to 120
$M_{\odot}$ at Solar Metallicity (Z = 0.014), A&A, 537, A146 https://doi.org/10.1051/0004-6361/201117751 -
Freyer, T., Hensler, G., & Yorke, H. W. 2003, Massive Stars and the Energy Balance of the Interstellar Medium. I. The Impact of an Isolated 60
$M_{\odot}$ Star, ApJ, 594, 888 https://doi.org/10.1086/376937 -
Garcia-Segura, G., Langer, N., & Mac Low, M.-M. 1996a, The Hydrodynamic Evolution of Circumstellar Gas around Massive Stars. II. The Impact of the Time Sequence O Star
$\rightarrow$ RSG$\rightarrow$ WR Star, A&A, 316, 133 -
Garcia-Segura, G., Mac Low, M.-M., & Langer, N. 1996b, The Dynamical Evolution of Circumstellar Gas around Massive Stars. I. The Impact of the Time Sequence O Star
$\rightarrow$ LBV$\rightarrow$ WR Star, A&A, 305, 229 - Georgy, C., Ekstrom, S., Meynet, G., et al. 2012, Grids of Stellar Models with Rotation II. WR Populations and Supernovae/GRB Progenitors at Z = 0.014, A&A, 542, A29 https://doi.org/10.1051/0004-6361/201118340
- Georgy, C., Walder, R., Folini, D., et al. 2013, Circumstellar Medium around Rotating Massive Stars at Solar Metallicity, A&A, 559, A69 https://doi.org/10.1051/0004-6361/201321226
- Higdon, J. C., Lingenfelter, R. E., & Ramaty, R. 1998, Cosmic-Ray Acceleration from Supernova Ejecta in Superbubbles, ApJL, 509, L33 https://doi.org/10.1086/311757
- Higdon, J. C., & Lingenfelter, R. E. 2013, The Galactic Spatial Distribution of OB Associations and Their Surrounding Supernova-Generated Superbubbles, ApJ, 775, 110 https://doi.org/10.1088/0004-637X/775/2/110
- Hillas, A. M. 2005, Can Diffusive Shock Acceleration in Supernova Remnants Account for High Energy Galactic Cosmic Rays?, J. Phys. G, 31, R95 https://doi.org/10.1088/0954-3899/31/5/R02
- Jura, M., & Kleinmann, S. G. 1990, Mass-Losing M Supergiants in the Solar Neighborhood, ApJS, 73, 769 https://doi.org/10.1086/191488
- Kroupa, P., & Boily, C. M., 2002, On the Mass Function of Star Clusters, MNRAS, 336, 1188 https://doi.org/10.1046/j.1365-8711.2002.05848.x
- Kroupa, P., Weidner, C., Pflamm-Altenburg, J., et al. 2013, The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations, in Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, ed. T. D. Oswalt & G. Gilmore (Dordrecht: Springer), 115
- Krticka, J., & Kubat, J. 2010, Comoving Frame Models of Hot Star Winds. I. Test of the Sobolev Approximation in the Case of Pure Line Transitions, A&A, 519, A50 https://doi.org/10.1051/0004-6361/201014111
- Krticka, J. 2014, Mass Loss in Main-Sequence B Stars, A&A, 564, A70 https://doi.org/10.1051/0004-6361/201321980
- Lamers, H. J. G. L. M., & Leitherer, C. 1993, What Are the Mass-Loss Rates of O Stars?, ApJ, 412, 771 https://doi.org/10.1086/172960
- Lamers, H. J. G. L. M., Snow, T. P., & Lindholm, D. M. 1995, Terminal Velocities and the Bi-Stability of Stellar Winds, ApJ, 455, 269. https://doi.org/10.1086/176575
- Mauron, N., & Josselin, E. 2011, The Mass-Loss Rates of Red Supergiants and the de Jager Prescription, A&A, 526, A156 https://doi.org/10.1051/0004-6361/201013993
- McKee, C. F., & Ostriker, E. C. 2007, Theory of Star Formation, ARA&A, 45, 565 https://doi.org/10.1146/annurev.astro.45.051806.110602
- Meyer, D. M.-A., Mackey, J., Langer, N., et al. 2014, Models of the Circumstellar Medium of Evolving, Massive Runaway Stars Moving through the Galactic Plane, MNRAS, 444, 2754 https://doi.org/10.1093/mnras/stu1629
- Miller, G., & Scalo, J. M. 1979, The Initial Mass Function and Stellar Birthrate in the Solar Neighborhood, ApJS, 41, 513. https://doi.org/10.1086/190629
- Muijres, L. E., Jorick Vink, S., de Koter, A., Mller, P. E., & Langer, N. 2012, Predictions for Mass-Loss Rates and TerminalWind Velocities of Massive O-Type Stars, A&A, 537, A37 https://doi.org/10.1051/0004-6361/201015818
- Nieuwenhuijzen, H., & de Jager, C. 1990, Parametrization of Stellar Rates of Mass Loss as Functions of the Fundamental Stellar Parameters M, L, and R, A&A, 231, 134
- Nugis, T., & Lamers, H. J. G. L. M. 2000, Mass-Loss Rates of Wolf-Rayet Stars as a Function of Stellar Parameters, A&A, 360, 227
- Puls, J., Vink, J. S., & Najarro, F. 2008, Mass Loss from Hot Massive Stars, A&A Rv, 16, 209 https://doi.org/10.1007/s00159-008-0015-8
- Reed, B. C. 2005, New Estimates of the Solar-Neighborhood Massive Star Birthrate and the Galactic Supernova Rate, AJ, 130, 1652 https://doi.org/10.1086/444474
- Riquelme, M. A., & Spitkovsky, A. 2011, Electron Injection by Whistler Waves in Non-Relativistic Shocks, ApJ, 733, 63 https://doi.org/10.1088/0004-637X/733/1/63
- Salpeter, E. E. 1955, The Luminosity Function and Stellar Evolution, ApJ, 121, 161 https://doi.org/10.1086/145971
- Scalo, J. M. 1986, The Stellar Initial Mass Function, FCPh, 11, 1
- Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, New Grids of Stellar Models from 0.8 to 120 Solar Masses at Z = 0.020 and Z = 0.001, A&AS, 96, 269
- Schmidt, M. 1959, Derivation of the Initial Luminosity Function and the Past Rate of Star Formation, International Astronomical Union. Symposium 10, 99
- Sironi, L., & Cerutti, B. 2017, Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling, in Modelling Pulsar Wind Nebulae, Astrophysics and Space Science Library, ed. D. F. Torres, 446, 247
- Smith, N. 2014, Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars, ARA&A, 52, 487 https://doi.org/10.1146/annurev-astro-081913-040025
- Strong, A, W., Porter, T. A., Digel, S. W., et al. 2010, Global Cosmic-Ray-Related Luminosity and Energy Budget of the Milky Way, ApJL, 722, L57
- Treumann, R. A. 2009, Fundamentals of Collisionless Shocks for Astrophysical Application, 1. Non-Relativistic Shocks, A&A Rv, 174, 409
- van Marle, A. J., Meliani, Z., & Marcowith, A. 2012, A Hydrodynamical Model of the Circumstellar Bubble Created by Two Massive Stars, A&A, 541, L8 https://doi.org/10.1051/0004-6361/201219180
- Vink, J. S. 2015, Mass-Loss Rates of Very Massive Stars, in Very Massive Stars in the Local Universe, Astrophysics and Space Science Library, ed. J. S. Vink, 412, 77
- Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 1999, On the Nature of the Bi-Stability Jump in the Winds of Early-Type Supergiants, A&A, 380, 181.
- Vink, J. S., de Koter, A., & Lamers, H. J. G .L. M. 2000, New Theoretical Mass-Loss Rates of O and B Stars, A&A, 362, 295
- Vink, J. S., de Koter, A., & Lamers, H. J. G .L. M. 2001, Mass-Loss Predictions for O and B Stars as a Function of Metallicity, A&A, 369, 574 (VKL01) https://doi.org/10.1051/0004-6361:20010127
- Volk, H. J., & Forman, M. 1982, Cosmic Rays and Gamma-Rays from OB Stars, ApJ, 253, 188 https://doi.org/10.1086/159623
- Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, Interstellar Bubbles. II - Structure and Evolution, ApJ, 218, 377 https://doi.org/10.1086/155692
- Weidner, C., Kroupa, P., Pflamm-Altenburg, J., & Vazdekis, A. 2013, The Galaxy-Wide Initial Mass Function of Dwarf Late-Type to Massive Early-Type Galaxies, MNRAS, 436, 3309 https://doi.org/10.1093/mnras/stt1806
- Yoon, S.-C., 2015, Evolutionary Models for Type Ib/c Supernova Progenitors, PASA, 32, 15
- Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, Type Ib/c Supernovae in Binary Systems. I. Evolution and Properties of the Progenitor Stars, ApJ, 725, 940 https://doi.org/10.1088/0004-637X/725/1/940
- Zakhozhay, V. A. 2013, Lifetimes of Stars in the Main Sequence and the Maximum Mass of Stars in the Galactic Disk, Kinematics and Physics of Celestial Bodies, 29, 195 https://doi.org/10.3103/S0884591313040065
- Zinnecker, H., & Yorke, H. W. 2007, Toward Understanding Massive Star Formation, ARA&A, 45, 481 https://doi.org/10.1146/annurev.astro.44.051905.092549
Cited by
- The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function vol.6, pp.2296-987X, 2019, https://doi.org/10.3389/fspas.2019.00007