DOI QR코드

DOI QR Code

X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

  • Engle, Scott G. (Department of Astronomy and Astrophysics, Villanova University) ;
  • Guinan, Edward F. (Department of Astronomy and Astrophysics, Villanova University)
  • Received : 2012.04.27
  • Accepted : 2012.05.16
  • Published : 2012.06.15

Abstract

To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, ${\delta}$ Cep and ${\beta}$ Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating $10^4$ K up to ${\sim}3{\times}10^5$ K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range ${\varphi}{\approx}0.8-1.0$ and vary by factors as large as $10{\times}$. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log $L_X{\approx}28.5-29.1$ ergs/sec, and plasma temperatures in the $2-8{\times}106$ K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven ${\alpha}^2$ equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 ${\varphi}$) favor the shock heating mechanism hypothesis.

Keywords

References

  1. Arellano Ferro A, Period and amplitude variations of Polaris, ApJ, 274, 755-762 (1983). http://dx.doi.org/10.1086/161486
  2. Benedict GF, McArthur BE, Feast MW, Barnes TG, Harrison TE, et al., Hubble space telescope fine guidance sensor parallaxes of galactic Cepheid variable stars: period-luminosity relations, AJ, 133, 1810-1827 (2007). http://dx.doi.org/10.1086/511980
  3. Bohm-Vitense E, Uber die wasserstoffkonvektionszone in sternen verschiedener effektivtemperaturen und leuchtkrafte. Mit 5 textabbildungen, ZA, 46, 108-143 (1958).
  4. Bohm-Vitense E, Love SG, Emission lines in the long-period Cepheid L Carinae, ApJ, 420, 401-414 (1994). http://dx.doi.org/10.1086/173570
  5. Chabrier G, Kuker M, Large-scale ${\alpha}2$-dynamo in low-mass stars and brown dwarfs, A&A, 446, 1027-1037 (2006). http://dx.doi.org/10.1051/0004-6361:20042475
  6. Cox JP, Pulsating stars, RPPh, 37, 563-698 (1974). http://dx.doi.org/10.1088/0034-4885/37/5/001
  7. Cox JP, Theory of Cepheid pulsation--excitation mechanisms, in Cepheids: theory and observations, in Proceedings of the Colloquium, Toronto, Canada, May 29-June 1, 1984 (Cambridge University Press, New York, 1985), 126-146.
  8. DeWarf LE, Datin KM, Guinan EF, X-ray, FUV, and UV observations of ${\alpha}$ Centauri B: determination of long-term magnetic activity cycle and rotation period, ApJ, 722, 343-357 (2010). http://dx.doi.org/10.1088/0004-637X/722/1/343
  9. Eddington AS Sir, On the cause of Cepheid pulsation, MNRAS, 101, 182-194 (1941). https://doi.org/10.1093/mnras/101.4.182
  10. Engle SG, Guinan EF, Depasquale J, Evans N, The secret XUV lives of Cepheids: FUV/X-ray observations of Polaris and ${\beta}$ Dor, AIPC, 1135, 192-197 (2009). http://dx.doi.org/10.1063/1.3154048
  11. Engle SG, Guinan EF, Koch RH, The North Star mysteries: the remarkable brightness increase of Polaris from historical and modern observations, BAAS, 36, 744 (2004).
  12. Engle SG, Guinan E, Macri L, Pellerin A, The strange case of Hubble's V19 in M33: monitoring the remarkable changes and possible real-time evolution of a classical cepheid, AAS Meeting #217, #342.06, BAAS, 43 (2011).
  13. Evans NR, Schaefer G, Bond HE, Nelan E, Bono G, et al., Polaris: mass and multiplicity, IAUS, 240, 102-104 (2007). http://dx.doi.org/10.1017/S1743921307003870
  14. Fokin AB, Gillet D, Breitfellner MG, Pulsating motions and turbulence in ${\delta}$ Cephei, A&A, 307, 503-515 (1996).
  15. Freedman WL, Madore BF, A physically based method for scaling Cepheid light curves for future distance determinations, ApJ, 719, 335-340 (2010). http://dx.doi.org/10.1088/0004-637X/719/1/335
  16. Kamper KW, Fernie JD, Polaris revisited, AJ, 116, 936-940 (1998). http://dx.doi.org/10.1086/300452
  17. Kraft RP, $C{\alpha}$ II emission in classical Cepheid variables, ApJ, 125, 336-358 (1957). http://dx.doi.org/10.1086/146312
  18. Kukarkin BV, Pulsating stars (Keter Publishing House Jerusalem Ltd., Jerusalem, 1975).
  19. Leavitt HS, 1777 variables in the Magellanic Clouds, AnHar, 60, 87-108.3 (1908).
  20. Linsky JL, Wood BE, Judge P, Brown A, Andrulis C, et al., The transition regions of Capella, ApJ, 442, 381-400 (1995). http://dx.doi.org/10.1086/175447
  21. Macri LM, Sasselov DD, Stanek KZ, The discovery of Cepheids and a new distance to NGC 2841 using the Hubble space telescope, ApJ, 559, 243-259 (2001). https://doi.org/10.1086/322395
  22. Matthews LD, Marengo M, Evans NR, Bono G, New evidence for mass loss from ${\delta}$ Cephei from H I 21 cm line observations, ApJ, 744, 53 (2012). http://dx.doi.org/10.1088/0004-637X/744/1/53
  23. Neilson HR, Engle SG, Guinan E, Langer N, Wasatonic RP, et al., The period change of the Cepheid Polaris suggests enhanced mass loss, ApJ, 745, L32 (2012). http://dx.doi.org/10.1088/2041-8205/745/2/L32
  24. Ngeow C-C, Kanbur, SM, Period-colour and amplitude-colour relations in classical Cepheid variables. IV. The multiphase relations, MNRAS, 369, 723-733 (2006). http://dx.doi.org/10.1111/j.1365-2966.2006.10318.x
  25. Redfield S, Linsky JL, Ake TB, Ayres TR, Dupree AK, et al., A far ultraviolet spectroscopic explorer survey of late-type dwarf stars, ApJ, 581, 626-653 (2002). http://dx.doi.org/10.1086/344153
  26. Sasselov DD, Lester JB, The chromospheric structure of classical Cepheids: constraints from the He i lambda 10830 line, ApJ, 423, 795-805 (1994). http://dx.doi.org/10.1086/173858
  27. Schmidt EG, Parsons SB, The chromospheres of classical Cepheids. I. Low resolution IUE spectra, ApJS, 48, 185-198 (1982). http://dx.doi.org/10.1086/190774
  28. Schmidt EG, Parsons SB, The chromospheres of classical Cepheids. II. High-resolution profiles of the MG II H and K lines, ApJ, 279, 202-219 (1984a). http://dx.doi.org/10.1086/161883
  29. Schmidt EG, Parsons SB, The chromospheres of classical Cepheids. III. A search for transition region emission lines, ApJ, 279, 215-219 (1984b). http://dx.doi.org/10.1086/161884
  30. Spreckley SA, Stevens IR, The period and amplitude changes of Polaris (${\alpha}$ UMi) from 2003 to 2007 measured with SMEI, MNRAS, 388, 1239-1244 (2008). http://dx.doi.org/10.1111/j.1365-2966.2008.13439.x
  31. Turner DG, Majaess DJ, Lane DJ, Balam DD, Gieren WP, et al., Alessi 95 and the short-period Cepheid SU Cassiopeiae, MNRAS, 422, 2501-2509 (2012). http://dx.doi.org/10.1111/j.1365-2966.2012.20806.x
  32. Turner DG, Savoy J, Derrah J, Abdel-Sabour Abdel-Latif M, Berdnikov LN, The period changes of Polaris, PASP, 117, 207-220 (2005). http://dx.doi.org/10.1086/427838
  33. Turner DG, Berdnikov LN, On the crossing mode of the long-period Cepheid SV Vulpeculae, A&A, 423, 335-340 (2004). http://dx.doi.org/10.1051/0004-6361:20040163
  34. van Leeuwen F, Validation of the new Hipparcos reduction, A&A, 474, 653-664 (2007). http://dx.doi.org/10.1051/0004-6361:20078357

Cited by

  1. THE SECRET LIVES OF CEPHEIDS: EVOLUTIONARY CHANGES AND PULSATION-INDUCED SHOCK HEATING IN THE PROTOTYPE CLASSICAL CEPHEID δ Cep vol.794, pp.1, 2014, https://doi.org/10.1088/0004-637X/794/1/80
  2. THE SECRET LIVES OF CEPHEIDS: EVOLUTION, MASS-LOSS, AND ULTRAVIOLET EMISSION OF THE LONG-PERIOD CLASSICAL CEPHEID vol.824, pp.1, 2016, https://doi.org/10.3847/0004-637X/824/1/1
  3. Anchors for the cosmic distance scale: the Cepheid QZ Normae in the open cluster NGC 6067 vol.347, pp.1, 2013, https://doi.org/10.1007/s10509-013-1495-1
  4. Revisiting the fundamental properties of the Cepheid Polaris using detailed stellar evolution models vol.563, 2014, https://doi.org/10.1051/0004-6361/201423482