• Title/Summary/Keyword: SONOS Memory

Search Result 71, Processing Time 0.027 seconds

Nanoscale NAND SONOS memory devices including a Seperated double-gate FinFET structure

  • Kim, Hyun-Joo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • NAND-type SONOS with a separated double-gate FinFET structure (SDF-Fin SONOS) flash memory devices are proposed to reduce the unit cell size of the memory device and increase the memory density in comparison with conventional non volatile memory devices. The proposed memory device consists of a pair of control gates separated along the direction of the Fin width. There are two unique alternative technologies in this study. One is a channel doping method and the other is an oxide thickness variation method, which are used to operate the SDF-Fin SONOS memory device as two-bit. The fabrication processes and the device characteristics are simulated by using technology comuter-adided(TCAD). The simulation results indicate that the charge trap probability depends on the different channel doping concentration and the tunneling oxide thickness. The proposed SDG-Fin SONOS memory devices hold promise for potential application.

A study on the High Integrated 1TC SONOS Flash Memory (고집적화된 1TC SONOS 플래시 메모리에 관한 연구)

  • 김주연;이상배;한태현;안호명;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.26-31
    • /
    • 2002
  • To realize a high integrated Flash memory utilizing SONOS memory devices, the NOR type 1TC(one Transistor Cell) SONOS Flash arrays are fabricated and characterized. This SONOS Flash arrays with common source lines are designed and fabricated by conventional 0.35$\mu\textrm{m}$ CMOS process. The thickness of ONO for memory cell is tunnel oxide of 34${\AA}$, nitride of 73${\AA}$ and blocking oxide of 34${\AA}$. To investigate operating characteristics, CHEI(Channel Hot Electron Injection) method and Bit line erase method are selected as the write operation and the erase method, respectively. The disturbance characteristics according to the write/erase/read cycling are also examined. The degradation characteristics are investigated and then the reliability of SONOS flash memory is guaranteed.

  • PDF

A Study on the High Integrated 1TC SONOS flash Memory (고집적화된 1TC SONOS 플래시 메모리에 관한 연구)

  • 김주연;김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.372-377
    • /
    • 2003
  • To realize a high integrated flash memory utilizing SONOS memory devices, the NOR type ITC(one Transistor Cell) SONOS flash arrays are fabricated and characterized. This SONOS flash arrays with the common source lines are designed and fabricated by conventional 0.35$\mu\textrm{m}$ CMOS process. The thickness of ONO for memory cells is tunnel oxide of 34${\AA}$, nitride of 73${\AA}$ and blocking oxide of 34${\AA}$ . To investigate operating characteristics, CHEI(Channel Hot Electron Injection) method and bit line method are selected as the program and 4he erase operation, respectively. The disturbance characteristics ,according to the program/erase/read cycling are also examined. The degradation characteristics are investigated and then the reliability of SONOS flash memory is guaranteed.

SONOS 플래시 메모리의 구조에 관한 특성연구

  • Yang, Seung-Dong;Oh, Jae-Sub;Park, Jeong-Gyu;Jeong, Kwang-Seok;Kim, Yu-Mi;Yun, Ho-Jin;Lee, Ga-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.13-13
    • /
    • 2010
  • In this paper, the electrical characteristics of Fin-type SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) flash memory and Planar-type SONOS flash memory are analyzed. Compared to the Planar-type SONOS device, Fin-type SONOS device shows a good short channel effect immunity. Moreover, memory characteristics such as PIE speed, Endurance and Retention of FinFET SONOS flash are batter than that of conventional Planar-type SONOS flash memory.

  • PDF

A Study on SONOS Non-volatile Semiconductor Memory Devices for a Low Voltage Flash Memory (저전압 플래시메모리를 위한 SONOS 비휘발성 반도체기억소자에 관한 연구)

  • 김병철;탁한호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.269-275
    • /
    • 2003
  • Polysilicon-oxide-nitride-oxide-silicon(SONOS) transistors were fabricated by using 0.35${\mu}{\textrm}{m}$ complementary metal-oxide-semiconductor(CMOS) process technology to realize a low voltage programmable flash memory. The thickness of the tunnel oxide, the nitride, and the blocking oxide were 2.4nm, 4.0nm, and 2.5nm, respectively, and the cell area of the SONOS memory was 1.32$\mu$$m^2$. The SONOS device revealed a maximum memory window of 1.76V with a switching time of 50ms at 10V programming, as a result of the scaling effect of the nitride. In spite of scaling of nitride thickness, memory window of 0.5V was maintained at the end of 10 years, and the endurance level was at least 105 program/erase cycles. Over-erase, which was shown seriously in floating gate device, was not shown in SONOS device.

The Write Characteristics of SONOS NOR-Type Flash Memory with Common Source Line (공통 소스라인을 갖는 SONOS NOR 플래시 메모리의 쓰기 특성)

  • An, Ho-Myoung;Han, Tae-Hyeon;Kim, Joo-Yeon;Kim, Byung-Cheul;Kim, Tae-Geun;Seo, Kwang-Yell
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • In this paper, the characteristics of channel hot electron (CHE) injection for the write operation in a NOR-type SONOS flash memory with common source line were investigated. The thicknesses of he tunnel oxide, the memory nitride, and the blocking oxide layers for the gate insulator of the fabricated SONOS devices were $34{\AA}$, $73{\AA}$, and $34{\AA}$, respectively. The SONOS devices compared to floating gate devices have many advantages, which are a simpler cell structure, compatibility with conventional logic CMOS process and a superior scalability. For these reasons, the introduction of SONOS device has stimulated. In the conventional SONOS devices, Modified Folwer-Nordheim (MFN) tunneling and CHE injection for writing require high voltages, which are typically in the range of 9 V to 15 V. However CHE injection in our devices was achieved with the single power supply of 5 V. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve were investigated. The memory window of about 3.2 V and the write speed of $100{\mu}s$ were obtained. Also, the disturbance and drain turn-on leakage during CHE injection were not affected in the SONOS array. These results show that CHE injection can be achieved with a low voltage and single power supply, and applied for the high speed program of the SONOS memory devices.

  • PDF

A Study on the Corner Effect of Fin-type SONOS Flash Memory Using TCAD Simulation (TCAD 시뮬레이션을 이용한 Fin형 SONOS Flash Memory의 모서리 효과에 관한 연구)

  • Yang, Seung-Dong;Oh, Jae-Sub;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Lee, Sang-Youl;Lee, Hee-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.100-104
    • /
    • 2012
  • Fin-type SONOS (silicon-oxide-nitride-oxide-silicon) flash memory has emerged as novel devices having superior controls over short channel effects(SCE) than the conventional SONOS flash memory devices. However despite these advantages, these also exhibit undesirable characteristics such as corner effect. Usually, the corner effect deteriorates the performance by increasing the leakage current. In this paper, the corner effect of fin-type SONOS flash memory devices is investigate by 3D Process and device simulation and their electrical characteristics are compared to conventional SONOS devices. The corner effect has been observed in fin-type SONOS device. The reason why the memory characteristic in fin-type SONOS flash memory device is not improved, might be due to existing undesirable effect such as corner effect as well as the mutual interference of electric field in the fin-type structure as reported previously.

Simulation of Threshold Voltages for Charge Trap Type SONOS Memory Devices as a Function of the Memory States (기억상태에 따른 전하트랩형 SONOS 메모리 소자의 문턱전압 시뮬레이션)

  • Kim, Byung-Cheul;Kim, Hyun-Duk;Kim, Joo-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.981-984
    • /
    • 2005
  • This study is to realize its threshold voltage shift after programming operation in charge trap type SONOS memory by simulation. SONOS devices are charge trap type nonvolatile memory devices in which charge storage takes place in traps in the nitride-blocking oxide interface and the nitride layer. For simulation of their threshold voltage as a function of the memory states, traps in the nitride layer have to be defined. However, trap models in the nitride layer are not developed in commercial simulator. So, we propose a new method that can simulate their threshold voltage shift by an amount of charges induced to the electrodes as a function of a programming voltages and times as define two electrodes in the tunnel oxide-nitride interface and the nitride-blocking oxide interface of SONOS structures.

  • PDF

A study on the programming conditions suppressing the lateral diffusion of charges for the SONOS two-bit memory (SONOS two-bit 메모리의 측면확산에 영향을 주는 programming 조건 연구)

  • Lee, Myung-Shik;An, Ho-Myung;Seo, Kwang-Yell;Koh, Jung-Hyuk;Kim, Byung-Cheul;Kim, Joo-Yeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The SONOS devices have been fabricated by the conventional $0.35{\mu}m$ complementary metal-oxide-semiconductor (CMOS) process with NOR array. Two-bit operation using conventional process achieve the high density memory compare with other two-bit memory. Lateral diffusion phenomenon in the two-bit operation cause soft error in the memory. In this study, the programming conditions arc investigated in order to reduce lateral diffusion for two-bit operation of CSL-NOR type SONOS flash cell.

  • PDF

Fabrication of Tern bit level SONOS F1ash memories (테라비트급 SONOS 플래시 메모리 제작)

  • Kim, Joo-Yeon;Kim, Byun-Cheul;Seo, Kwang-Yell;Kim, Jung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.26-27
    • /
    • 2006
  • To develop tera-bit level SONOS flash memories, SONOS unit memory and 64 bit flash arrays are fabricated. The unit cells have both channel length and width of 30nm. The NAND & NOR arrays are fabricated on SOI wafer and patterned by E-beam. The unit cells represent good write/erase characteristics and reliability characteristics. SSL-NOR array have normal write/erase operation. These researches are leading the realization of Tera-bit level non-volatile nano flash memory.

  • PDF