• Title/Summary/Keyword: SOI(Silicon On Insulator)

Search Result 202, Processing Time 0.023 seconds

Top-Silicon thickness effect of Silicon-On-Insulator substrate on capacitorless dynamic random access memory cell application

  • Jeong, Seung-Min;Kim, Min-Su;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.145-145
    • /
    • 2010
  • 반도체 소자의 크기가 수십 나노미터 영역으로 줄어들면서, 메모리 소자 또한 미세화를 위해 새로운 기술을 요구하고 있다. 1T DRAM은 하나의 트랜지스터와 하나의 캐패시터 구조를 가진 기존의 DRAM과 달리, 캐패시터 영역을 없애고 하나의 트랜지스터만으로 동작하기 때문에 복잡한 공정과정을 줄일 수 있으며 소자집적화에도 용이하다. 또한 SOI (Silicon-On-Insulator) 기판을 사용함으로써 단채널효과와 누설전류를 감소시키고, 소비전력이 적다는 이점을 가지고 있다. 1T DRAM은 floating body effect에 의해 상부실리콘의 중성영역에 축적된 정공을 이용하여 정보를 저장하게 된다. floating body effect를 발생시키기 위해 본 연구에서는 SOI 기판을 사용한 MOSFET을 사용하였는데, SOI 기판은 불순물 도핑농도에 따라 상부실리콘의 공핍층 두께가 결정된다. 실제로 불순물을 $10^{15}cm^{-3}$ 정도 도핑을 하게 되면 완전공핍된 SOI 구조가 된다. 이는 subthreshold swing값이 작고 저전압, 저전력용 회로에 적합한 특성을 보이기 때문에 부분공핍된 SOI 구조보다 우수한 특성을 가진다. 하지만, 상부실리콘의 중성영역이 완전히 공핍되어 정공이 축적될 공간이 존재하지 않게 된다. 이를 해결하기 위해 기판에 전압을 인가 후 kink effect를 확인하여, 메모리 소자로서의 구동 가능성을 알아보았다. 본 연구에서는 상부실리콘의 두께가 감소함에 따라 1T DRAM의 메모리 특성변화를 관찰하고자, TMAH (Tetramethy Ammonuim Hydroxide) 용액을 이용한 습식식각을 통해 상부실리콘의 두께가 각기 다른 소자를 제작하였다. 제작된 소자는 66 mv/dec의 우수한 subthreshold swing 값을 나타내며 빠른 스위칭 특성을 보였다. 또한 kink effect가 발생하는 최적의 조건을 찾고, 상부실리콘의 두께가 메모리 소자의 쓰기/소거 동작의 경향성에 미치는 영향을 평가하였다.

  • PDF

A Device Parameter Extraction Method for Thin Film SOI MOSFETs (얇은 박막 SOI (Silicon-On-Insulator) MOSFET 에서의 소자 변수 추출 방법)

  • Park, Sung-Kye;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.820-824
    • /
    • 1992
  • An accurate method for extracting both Si film doping concentration and front or back silicon-to-oxide fixed charge density of fully depleted SOI devices is proposed. The method utilizes the current-to-voltage and capacitance-to-voltage characteristics of both SOI NMOSFET and PMOSFET which have the same doping concentration. The Si film doping concentration and the front or back silicon-to-oxide fixed charge density are extracted by mainpulating the respective threshold voltages of the SOI NMOSFET and PMOSFET according to the back surface condition (accumulation or inversion) and the capacitance-to-voltage characteristics of the SOI PMOSFET. Device simulations show that the proposed method has less than 10% errors for wide variations of the film doping concentration and the front or the back silicon-to-oxide fixed charge density.

  • PDF

SOI Structures Formed at Room Temperature Using FIPOS Technique (FIPOS 기술을 이용한 SOI 구조의 실온제조)

  • Choi, Kwang-Don;Lee, Jong-Byung;Sohn, Byung-Ki;Shin, Jong-Ug
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1304-1314
    • /
    • 1988
  • An experimental study of the influences of HF concentration, current density, reaction time and the silicon surface, on the formation and properties of porous silicon are reported. The SOI (Silicon-On-Insulator) strip lines with 100 um width are fabricated at room temperature by anodic oxidation of PSL (Porous Silicon Layers). The stress on the silicon island induced by the anodic oxidation can be avoided by the two-step PSL formation technique. At the final step of IC fabrication process, device isolation will be achieved at room temperature by this method.

  • PDF

Current-Voltage and Conductance Characteristics of Silicon-based Quantum Electron Device (실리콘 양자전자소자의 전류-전압 및 컨덕턴스 특성)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.811-816
    • /
    • 2019
  • The silicon-adsorbed oxygen(Si-O) superlattice grown by ultra high vacuum-chemical vapor deposition(UHV-CVD) was introduced as an epitaxial barrier for silicon quantum electron devices. The current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the Si-O superlattice can serve as an epitaxially grown insulating layer as possible replacement of silicon-on-insulator(SOI). This thick barrier may be useful as an epitaxial insulating gate for field effect transistors(FETs). The rationale is that it should be possible to fabricate a FET on top of another FET, moving one step closer to the ultimate goal of future silicon-based three-dimensional integrated circuit(3DIC).

A Novel Body-tied Silicon-On-Insulator(SOI) n-channel Metal-Oxide-Semiconductor Field-Effect Transistor with Grounded Body Electrode

  • Kang, Won-Gu;Lyu, Jong-Son;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.1-12
    • /
    • 1996
  • A novel body-tied silicon-on-insulator(SOI) n-channel metal-oxide-semiconductor field-effect transistor with grounded body electrode named GBSOI nMOSFET has been developed by wafer bonding and etch-back technology. It has no floating body effect such as kink phenomena on the drain current curves, single-transistor latch and drain current overshoot inherent in a normal SOI device with floating body. We have characterized the interface trap density, kink phenomena on the drain current ($I_{DS}-V_{DS}$) curves, substrate resistance effect on the $I_{DS}-V_{DS}$ curves, subthreshold current characteristics and single transistor latch of these transistors. We have confirmed that the GBSOI structure is suitable for high-speed and low-voltage VLSI circuits.

  • PDF

Dependence of Electrical Characteristics on Back Bias in SOI Device (SOI(Silicon-on-Insulator) 소자에서 후면 Bias에 대한 전기적 특성의 의존성)

  • 강재경;박재홍;김철주
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.43-44
    • /
    • 1993
  • In this study SOI MOSFET model of the structure with 4-terminals and 3-interfaces is proposed. An SOI MOSFET is modeled with the equivalent circuit considered the interface capacitances. Parameters of SOI MOSFET device are extracted, and the electrical characteristics due to back-bias change is simulated. In SOI-MOSFET model device we describe the characteristics of threshold voltage, subthreshold slope, maxium electrical field and drain currents in the front channel when the back channel condition move into accmulation, depletion, and inversion regions respectively.

  • PDF

Processing and Characterization of a Direct Bonded SOI using SiO$_2$ Thin Film (SiO$_2$ 박막을 이용한 SOI 직접접합공정 및 특성)

  • 유연혁;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.863-870
    • /
    • 1999
  • SOI(silicon on insulafor) was fabricated through the direct bonding using (100) Si wafer and 4$^{\circ}$off (100) Si wafer to investigate the stacking faults in silicon at the Si/SiO2 oxidized and bonded interface. The treatment time of wafer surface using MSC-1 solution was varied in order to observe the effect of cleaning on bonding characteristics. As the MSC-1 treating time increased surface hydrophilicity was saturated and surface microroughness increased. A comparison of surface hydrophilicity and microroughness with MSC-1 treating time indicates that optimum surface modified condition for time was immersed in MSC-1 for 2 min. The SOI structure directly bonded using (100) Si wafer and 4$^{\circ}$off (100) Si wafer at the room temperature were annealed at 110$0^{\circ}C$ for 30 min. Then the stacking faults at the bonding and oxidation interface were examined after the debonding. The results show that there were anomalies in the gettering of the stacking faults at the bonded region.

  • PDF

APPLICATIONS OF SOI DEVICE TECHNOLOGY

  • Ryoo, Kunkul
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.482-486
    • /
    • 1996
  • The progress of microelectronics technology has been requiring agressive developments of device technologies. Also the requirements of the next generation devices is heading to the limits of their functions and materials, and hence asking the very specific silicon wafer such as SOI(Silicon On Insulator) wafer. The talk covers the dome stic and world-wide status of SOI device developments and applications. The presentation will also touch some predictions such as SOI device prgress schedules, impacts on the normal wafer developments, market sizes, SOI wafer prices, and so on. Finally it will cover technical aspects which are silicon oxide conditions for bonding, point defects and, surface contaminations. These points will be hopefully overcome by involved people in microelectronics industry.

  • PDF

High Performance nFET Operation of Strained-SOI MOSFETs Using Ultra-thin Strained Si/SiGe on Insulator(SGOI) Substrate (초고속 구동을 위한 Ultra-thin Strained SGOI n-MOS 트랜지스터 제작)

  • 맹성렬;조원주;오지훈;임기주;장문규;박재근;심태헌;박경완;이성재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1065-1068
    • /
    • 2003
  • For the first time, high quality ultra-thin strained Si/SiGe on Insulator (SGOI) substrate with total SGOI thickness( $T_{Si}$ + $T_{SiGe}$) of 13 nm is developed to combine the device benefits of strained silicon and SOI. In the case of 6- 10 nm-thick top silicon, 100-110 % $I_{d,sat}$ and electron mobility increase are shown in long channel nFET devices. However, 20-30% reduction of $I_{d,sat}$ and electron mobility are observed with 3 nm top silicon for the same long channel device. These results clearly show that the FETs operates with higher performance due to the strain enhancement from the insertion of SiGe layer between the top silicon layer and the buried oxide(BOX) layer. The performance degradation of the extremely thin( 3 nm ) top Si device can be attributed to the scattering of the majority carriers at the interfaces.

  • PDF

Hole Mobility Enhancement in (100)- and (110)-surface of Ultrathin-body(UTB) Silicon-on-insulator(SOI) Metal Oxide Semiconductors Field Effect Transistor (Ultrathin-body SOI MOSFETs에서 면방향에 따른 정공의 이동도 증가)

  • Kim, Kwan-Su;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.939-942
    • /
    • 2007
  • We investigated the characteristics of UTB-SOI pMOSFETs with SOI thickness($T_{SOI}$) ranging from 10 nm to 1 nm and evaluated the dependence of electrical characteristics on the silicon surface orientation. As a result, it is found that the subthreshold characteristics of (100)-surface UTB-SOI pMOSFETs were superior to (110)-surface. However, the hole mobility of (110)-surface were larger than that of (100)-surface. Especially, the enhancement of effective hole mobility at the effective field of 0.1 MV/cm was observed from 3-nm to 5-nm SOI thickness range.